2022

Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Christian Hagel, Sonja Spahr-Hess, Matteo M. Bonsanto, Heinz Handels, Ralf Brinkmann, and Robert Huber,
Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology, Frontiers in Oncology , 08 2022.
DOI:10.3389/fonc.2022.896060
Bibtex: BibTeX
@article{Strenge-2022,
   author = {Strenge, P.;Lange, B.;Grill,C.;Danicke,V.;Theisen-Kunde, D.;Hagel, C.;Spahr-Hess, S.;;Bonsanto, Matteo M.;Handels, H.; and Huber, R.;Brinkmann, R.},
   title = {Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology},
   journal = {Frontiers in Oncology},
Keywords = {AG-Huber_FDML, AG-Huber_OCT, brain, tumor, glioblastoma multiforme, OCT, neural network, attenuation (absorption)
coefficient, optical coherence tomography},
   DOI = {https://doi.org/10.3389/fonc.2022.896060},
   url = {https://www.frontiersin.org/articles/10.3389/fonc.2022.896060/full},
   year = {2022},
   type = {Journal Article}
}
Christin Grill, Torben Blömker, Mark Schmidt, Dominic Kastner, Tom Pfeiffer, Jan Philip Kolb, Wolfgang Draxinger, Sebastian Karpf, Christian Jirauschek, and Robert Huber,
Towards phase-stabilized Fourier domain mode-locked frequency combs, Communications Physics , vol. 5, no. 1, 08 2022. Springer Science and Business Media LLC.
DOI:10.1038/s42005-022-00960-w
Bibtex: BibTeX
@article{Grill2022,
  doi = {10.1038/s42005-022-00960-w},
  year = {2022},
  publisher = {Springer Science and Business Media {LLC}},
  volume = {{5}},
  number = {{1}},
  author = {C. Grill, T. Bl\"{o}mker, M. Schmidt, D. Kastner, T. Pfeiffer, J.P. Kolb, W. Draxinger, S. Karpf, C. Jirauschek and R. Huber},
  title = {Towards phase-stabilized Fourier domain mode-locked frequency combs},
  journal = {{Communications Physics}},
keywords={AG-Huber_FDML, FDML, Fourier domain mode locking, phase, frequency comb, coherence, beating}
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Christian Hagel, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Registration of histological brain images onto optical coherence tomography images based on shape information, Physics in Medicine & Biology , 06 2022.
DOI:10.1088/1361-6560/ac6d9d
Bibtex: BibTeX
@article{Strenge2022,
   author = {Strenge, P;Lange, B;Grill, C;Draxinger, W;Danicke, V;Theisen-Kunde, D;Hagel, C;Spahr-Hess, S;Bonsanto, Matteo M.;Huber, R;Handels, H and Brinkmann, R},
   title = {Registration of histological brain images onto optical coherence tomography images based on shape information},
keywords = {brain, glioblastoma multiforme, shape, OCT, optical coherence tomography, AG-Huber_OCT,},
   journal = {Physics in Medicine & Biology},
   ISSN = {0031-9155},
   url = {http://iopscience.iop.org/article/10.1088/1361-6560/ac6d9d},
   year = {2022},
   type = {Journal Article}
}
Madita Göb, Sazgar Burhan, Simon Lotz, and Robert Huber,
Towards ultra-large area vascular contrast skin imaging using multi-MHz-OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032022. pp. 27 -- 31.
DOI:10.1117/12.2612171
Bibtex: BibTeX
@inproceedings{Goeb2022BiOS,
author = {M. Göb, S. Burhan, S. Lotz and R. Huber},
title = {{Towards ultra-large area vascular contrast skin imaging using multi-MHz-OCT}},
volume = {11948},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {27 -- 31},
keywords = {AG-Huber_FDML, AG-Huber_OCT, Optical Coherence Tomography, Fourier Domain Mode Locking, FDML, Optical Coherence Angiography, OCTA, Medical optics and biotechnology, Medical imaging, Three-dimensional image acquisition, Scanners, Microscopy},
year = {2022},
doi = {10.1117/12.2612171},
}
Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Sebastian Karpf, and Robert Huber,
Ultra-high-accuracy chromatic dispersion measurement in optical fibers, in Optical Components and Materials XIX , Shibin Jiang and Michel J. F. Digonnet, Eds. SPIE, 032022. pp. 146 -- 152.
DOI:10.1117/12.2608773
Bibtex: BibTeX
@inproceedings{Klufts2022,
author = {M. Klufts, S. Lotz, M. Bashir, S. Karpf and R. Huber},
title = {{Ultra-high-accuracy chromatic dispersion measurement in optical fibers}},
volume = {11997},
booktitle = {Optical Components and Materials XIX},
editor = {Shibin Jiang and Michel J. F. Digonnet},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {146 -- 152},
keywords = {AG-Huber_FDML, Dispersion measurement, Chromatic dispersion, fiber dispersion measurement, optical component characterization, tunable laser, FDML},
year = {2022},

url = {https://zenodo.org/record/6406367#.YkcF3TWxX8A},
}
Aaron Doug Deen, Heleen van Beusekom, Tom Pfeiffer, Mathijs Stam, Dominique de Kleijn, Jolanda Wentzel, Robert Huber, Antonius F. W. van der Steen, Gijs van Soest, and Tianshi Wang,
Spectroscopic thermo-elastic optical coherence tomography for tissue characterization, Biomedical Optics Express , vol. 13(3), pp. 1430-1446, 02 2022.
DOI:10.1364/BOE.447911
Bibtex: BibTeX
@article{Deen2022,
   author = {Deen, A D;Van Beusekom, H M. M.;Pfeiffer, T;Stam, M;Kleijn, D De;Wentzel, J;Huber, R;Van Der Steen, A F. W.;Soest, G Van and Wang, T},
   title = {Spectroscopic thermo-elastic optical coherence tomography for tissue characterization},
   journal = {BioOptExpr},
keywords = {AG-Huber, Endoscopic imaging, Image processing, Image quality, Imaging techniques, Optical imaging, Tissue characterization},
   volume = {13(3)},
   pages = {1430-1446},
   DOI = {10.1364/BOE.447911},
    year = {2022},
   type = {Journal Article}
}
Madita Göb, Tom Pfeiffer, Wolfgang Draxinger, Simon Lotz, Jan Philip Kolb, and Robert Huber,
Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence, Biomed. Opt. Express , vol. 13, no. 2, pp. 713--727, 02 2022. OSA.
DOI:10.1364/BOE.448353
Bibtex: BibTeX
@article{Goeb2022,
author = {M. G\"{o}b, T. Pfeiffer,  W. Draxinger, S. Lotz, J.P. Kolb and R. Huber},
journal = {Biomed. Opt. Express},
keywords = {AG-Huber_OCT;AG-Huber_FDML; High speed imaging; Image processing; Image quality; In vivo imaging; Range imaging; Vertical cavity surface emitting lasers},
number = {2},
pages = {713--727},
publisher = {OSA},
title = {Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence},
volume = {13},
month = {Feb},
year = {2022},
doi = {10.1364/BOE.448353},
abstract = {We present continuous three-dimensional spectral zooming in live 4D-OCT using a home-built FDML based OCT system with 3.28 MHz A-scan rate. Improved coherence characteristics of the FDML laser allow for imaging ranges up to 10 cm. For the axial spectral zoom feature, we switch between high resolution and long imaging range by adjusting the sweep range of our laser. We present a new imaging setup allowing for synchronized adjustments of the imaging range and lateral field of view during live OCT imaging. For this, a novel inline recalibration algorithm was implemented that enables numerical k-linearization of the raw OCT fringes for every frame instead of every volume. This is realized by acquiring recalibration data within the dead time of the raster scan at the turning points of the fast axis scanner. We demonstrate in vivo OCT images of fingers and hands at different resolution modes and show real three-dimensional zooming during live 4D-OCT. A three-dimensional spectral zooming feature for live 4D-OCT is expected to be a useful tool for a wide range of biomedical, scientific and research applications, especially in OCT guided surgery.},
}

Konstantin Yashin, Matteo M. Bonsanto, Ksenia Achkasova, Anna Zolotova, Al-Madhaji Wael, Elena Kiseleva, Alexander Moiseev, Igor Medyanik, Leonid Kravets, Robert Huber, Ralf Brinkmann, and Natalia Gladkova,
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives, Diagnostics , vol. 12, no. 2, pp. 335, 01 2022.
DOI:10.3390/diagnostics12020335
Bibtex: BibTeX
@article{Yashin-2022,
   author = {Yashin, K;Bonsanto, M M;Achkasova, K;Zolotova, A;Wael, Al-M;Kiseleva, E;Moiseev, A;Medyanik, I;Kravets, L;Huber, R;Brinkmann, R and Gladkova, N},
   title = {OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives},
   journal = {Diagnostics},
   volume = {12},
   number = {2},
   pages = {335},
   ISSN = {2075-4418},
keywords = {AG-Huber; optical coherence tomography; brain imaging; neurosurgical guidance; brain tumor; minimally invasive theranostics; intraoperative imaging},
   url = {https://www.mdpi.com/2075-4418/12/2/335},
   year = {2022},
   type = {Journal Article}
}
x-x Liang, N. Linz, S. Freidank, G. Paltauf, and A Vogel,
Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation, Journal of Fluid Mechanics , vol. 940, pp. A5, 2022.
DOI:10.1017/jfm.2022.202
Bibtex: BibTeX
@article{Liang2022,
   author = {Liang, X-X;Linz, N;Freidank, S;Paltauf, G and Vogel, A},
   title = {Comprehensive analysis of spherical bubble oscillations and shock wave emission in laser-induced cavitation},
keywords = {bubble dynamics, cavitation, shock waves},
   journal = {Journal of Fluid Mechanics},
   volume = {940},
   pages = {A5},
   ISSN = {0022-1120},
   DOI = {10.1017/jfm.2022.202},
  
   year = {2022},
   type = {Journal Article}
}
Birgit Lange, Tomasz Ozimek, Judith R. Wießmeyer, Mario W. Kramer, Axel S. Merseburger, and Ralf Brinkmann,
Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy, Biomedical Physics & Engineering Express , vol. 8, no. 5, pp. 055023, 2022.
DOI:10.1088/2057-1976/ac82c7
Bibtex: BibTeX
@article{Lange2022,
   author = {Lange, B;Ozimek, T;Wießmeyer, J R;Kramer, M W.;Merseburger, A S. and Brinkmann, R},
   title = {Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy},
   journal = {Biomedical Physics & Engineering Express},
   volume = {8},
   number = {5},
abstract = {Objectives. In laser lithotripsy, a green aiming beam overlying the infrared (IR) treatment radiation gives rise to reflection and fluorescence signals that can be measured via the treatment fiber. While stone autofluorescence is used for target detection, the condition of the fiber can be assessed based on its Fresnel reflection. For good applicability, fluorescence detection of stones should work even when the stone and fiber are not in direct contact. Fiber breakage detection, on the other hand, can be falsified if surfaces located in front of the fiber reflect light from the aiming laser back into it. For both applications, therefore, a fundamental investigation of the dependence of the signal amplitude on the distance between fiber and surface is important. Methods. Calculations of the signal drop of fluorescence or diffuse and specular reflection with increasing fiber distance were performed using ray tracing based on a simple geometric model for different fiber core diameters. Reflection signals from a mirror, diffuse reflector, human calculi, and porcine renal tissue placed in water were measured at varying distances (0–5 mm). For human calculi, fluorescence signals were recorded simultaneously. Results. The calculations showed a linear signal decrease down to ∼60% of the maximum signal (fiber in contact). The distance z at which the signal drops to for example 50% depends linearly on the diameter of the fiber core. For fibers used in lithotripsy and positioned in water, z50% ranges from 0.55 mm (200 μm core diameter) to 2.73 mm, (1 mm core diameter). The calculations were in good agreement with the experimental results. Conclusions. The autofluorescence signals of stones can be measured in non-contact mode. Evaluating the Fresnel signal of the end face of the fiber to detect breakage is possible unless the fiber is situated less than some millimeters to reflecting surfaces.},
keywords = {urolithiasis, laser lithotripsy, fluorescence, reflectance},
   pages = {055023},
   ISSN = {2057-1976},
   DOI = {10.1088/2057-1976/ac82c7},
   
   year = {2022},
   type = {Journal Article}
}
Yoko Miura, Alessa Hutfilz, Eric Seifert, Benedikt Schmarbeck, Akira Murakami, Kishiko Ohkoshi, and Ralf Brinkmann,
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
DOI:https://www.mdpi.com/2075-1729/12/9/1313
Datei: 1313
Bibtex: BibTeX
@article{Miura2022,
   author = {Miura, Y;Inagaki, K;Hutfilz, A;Seifert, E;Schmarbeck, B;Murakami, A;Ohkoshi, K and Brinkmann, R},
   title = {Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application},
   journal = {Life},
   volume = {12(9)},
  
   pages = {1313},
   ISSN = {2075-1729},
   url = {https://www.mdpi.com/2075-1729/12/9/1313},
   year = {2022},
   type = {Journal Article}
}
G Burchard, and J Roider,
Self-Examination Low-Cost Full-Field Optical Coherence Tomography (SELFF-OCT) for neovascular age-related macular degeneration: a cross-sectional diagnostic accuracy study, BMJ Open , vol. 12, no. 6, pp. e055082, 2022.
DOI:10.1136/bmjopen-2021-055082
Datei: e055082.abstract
Bibtex: BibTeX
@article{von-der-Burchardt2022,
   author = {von der Burchard, C;Sudkamp, H;Tode, J;Ehlken, C;Purtskhvanidze, K;Moltmann, M;Heimes, B;Koch, P;Münst, M;vom Endt, M;Kepp, T;Theisen-Kunde, D;König, I;Hüttmann, G and Roider, J},
   title = {Self-Examination Low-Cost Full-Field Optical Coherence Tomography (SELFF-OCT) for neovascular age-related macular degeneration: a cross-sectional diagnostic accuracy study},
   journal = {BMJ Open},
   volume = {12},
   number = {6},
   pages = {e055082},
   DOI = {10.1136/bmjopen-2021-055082},
   url = {http://bmjopen.bmj.com/content/12/6/e055082.abstract},
   year = {2022},
   type = {Journal Article}
}
X-X Liang, and A Vogel,
Probing neuronal functions with precise and targeted laser ablation in the living cortex: comment, Optica , vol. 9(8), pp. 868-871, 2022.
DOI:10.1364/OPTICA.454469
Bibtex: BibTeX
@article{Liang2022,
   author = {Liang, X-X and Vogel, A},
   title = {Probing neuronal functions with precise and targeted laser ablation in the living cortex: comment},
   journal = {Optica},
   volume = {9(8)},
   keywords = {Attenuation coefficient, Femtosecond lasers, Laser ablation, Laser irradiation, Numerical simulation, Thermal effects},
   pages = {868-871},
   DOI = {10.1364/OPTICA.454469},  
   year = {2022},
   type = {Journal Article}
}
G Pfäffle, and D. Hillmann,
Phase-Sensitive Measurements of Depth-Dependent Signal Transduction in the Inner Plexiform Layer, Frontiers in Medicine , vol. 9, 2022.
DOI:10.3389/fmed.2022.885187
Datei: fmed.2022.885187
Bibtex: BibTeX
@article{RN5328,
   author = {Pfäffle, C;Spahr, H;Gercke, K;Puyo, L;Höhl, S;Melenberg, D;Miura, Y;Hüttmann, G and Hillmann, D},
   title = {Phase-Sensitive Measurements of Depth-Dependent Signal Transduction in the Inner Plexiform Layer},
   journal = {Frontiers in Medicine},
   volume = {9},
   ISSN = {2296-858X},
   DOI = {10.3389/fmed.2022.885187},
keywords = {optoretinography, optical coherence tomography, phase-sensitive OCT, functional imaging, inner
plexiform layer, retina},
   url = {https://www.frontiersin.org/articles/10.3389/fmed.2022.885187},
   year = {2022},
   type = {Journal Article}
}
Manuel A. Schaller, Mitsuru Wilson, Viktoria Kleymann, Mario Mordmüller, Ralf Brinkmann, Matthias A. Müller, and Karl Worthmann,
Parameter estimation and model reduction for model predictive control in retinal laser treatment, Control Engineering Practice , vol. 128, pp. 105320, 2022.
DOI:https://doi.org/10.1016/j.conengprac.2022.105320
Bibtex: BibTeX
@article{Schaller2022,
   author = {Schaller, M;Wilson, M;Kleyman, V;Mordmüller, M;Brinkmann, R;Müller, M. A. and Worthmann, K},
   title = {Parameter estimation and model reduction for model predictive control in retinal laser treatment},
   journal = {Control Engineering Practice},
   volume = {128},
   pages = {105320},
   ISSN = {0967-0661},
   DOI = {https://doi.org/10.1016/j.conengprac.2022.105320},

   year = {2022},
   type = {Journal Article}
}
Manuel A. Schaller, Viktoria Kleymann, Mario Mordmüller, Schmidt Christian, Mitsuru Wilson, Ralf Brinkmann, Matthias A. Müller, and Karl Worthmann,
Model predictive control for retinal laser treatment at 1 kHz, at - Automatisierungstechnik , vol. 70(11), pp. 992-1002, 2022.
Datei: auto-2022-0030
Bibtex: BibTeX
@article{Schaller2022,
   author = {Schaller, M.;Kleyman, K.;Mordmüller, M.;Schmidt, C.;Wilson, M.;Brinkmann, R.;Müller, M.A. and Worthmann, K.},
   title = {Model predictive control for retinal laser treatment at 1 kHz},
   journal = {at - Automatisierungstechnik},
   volume = {70(11)},
   keywords = {model predictive control; real-time control;retinal photocoagulation},
   pages = {992-1002},
  
   url = {https://doi.org/10.1515/auto-2022-0030},
   year = {2022},
   type = {Journal Article}
}
S. Freidank, and N. Linz,
Mechanisms of corneal intrastromal laser dissection for refractive surgery: ultra-high-speed photographic investigation at up to 50 million frames per second, BioOptExpr , vol. 13 (5), pp. 3056-3079, 2022.
DOI:10.1364/BOE.455926
Bibtex: BibTeX
@article{Freidank2022,
   author = {Freidank, S;Vogel, A and Linz, N},
   title = {Mechanisms of corneal intrastromal laser dissection for refractive surgery: ultra-high-speed photographic investigation at up to 50 million frames per second},
   journal = {BioOptExpr},
   volume = {13 (5)},
   
   pages = {3056-3079},
   DOI = {10.1364/BOE.455926},

   year = {2022},
   type = {Journal Article}
}
G Kohlfaerber,
Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways, Biomedical Optics Express , vol. 13 (6), pp. 3211-3223, 2022.
DOI:10.1364/BOE.456104
Bibtex: BibTeX
@article{Kohlfarber2022,
   author = {Kohlfaerber, T;Pieper, M;Münter, M;Holzhausen, C;Ahrens, M;Idel, C;Bruchhage, K-L;Leichtle, A;König, P;Hüttmann, G and Schulz-Hildebrandt, H},
   title = {Dynamic microscopic optical coherence tomography to visualize the morphological and functional micro-anatomy of the airways},
   journal = {Biomedical Optics Express},
   volume = {13 (6)},
   pages = {3211-3223},
   DOI = {10.1364/BOE.456104},
  
   year = {2022},
   type = {Journal Article}
}
P Musial,
Dynamic Contrast Microscopic Optical Coherence Tomography As a Novel Method for Assessing Corneal Epithelium During Exposure to Benzalkonium Chloride, Translational Vision Science & Technology , vol. 11(5), pp. 28-28, 2022.
DOI:10.1167/tvst.11.5.28
Datei: tvst.11.5.28
Bibtex: BibTeX
@article{Musial-2022,
   author = {Musial, G;Kohlfaerber, T;Ahrens, M;Schulz-Hildebrandt, H;Steven, P and Hüttmann, G},
   title = {Dynamic Contrast Microscopic Optical Coherence Tomography As a Novel Method for Assessing Corneal Epithelium During Exposure to Benzalkonium Chloride},
   journal = {Translational Vision Science & Technology},
keywords = {toxicity; optical coherence tomography; benzalkonium chloride},
   volume = {11(5)},

   pages = {28-28},
   ISSN = {2164-2591},
   DOI = {10.1167/tvst.11.5.28},
   url = {https://doi.org/10.1167/tvst.11.5.28},
   year = {2022},
   type = {Journal Article}
}
A. Thambyah M. Goodwin, and F. Vanholsbeeck,
Detection of subtle cartilage and bone tissue degeneration in the equine joint using polarisation-sensitive optical coherence tomography, Osteoarthritis and Cartilage , 2022.
DOI:https://doi.org/10.1016/j.joca.2022.04.006
Bibtex: BibTeX
@article{GOODWIN2022,
title = {Detection of subtle cartilage and bone tissue degeneration in the equine joint using polarisation-sensitive optical coherence tomography},
journal = {Osteoarthritis and Cartilage},
year = {2022},
issn = {1063-4584},
doi = {https://doi.org/10.1016/j.joca.2022.04.006},
author = {M. Goodwin, M. Klufts, J. Workman, A. Thambyah and F. Vanholsbeeck},
keywords = {Optical coherence tomography, Polarisation-sensitive optical coherence tomography, Osteoarthritis},
abstract = {Summary
Objective
To explore the ability of polarisation-sensitive optical coherence tomography (PS-OCT) to rapidly identify subtle signs of tissue degeneration in the equine joint.
Method
Polarisation-sensitive optical coherence tomography (PS-OCT) images were systematically acquired in four locations along the medial and lateral condyles of the third metacarpal bone in five dissected equine specimens. Intensity and retardation PS-OCT images, and anomalies observed therein, were then compared and validated with high resolution images of the tissue sections obtained using Differential Interference contrast (DIC) optical light microscopy.
Results
The PS-OCT system was capable of imaging the entire equine osteochondral unit, and allowed delineation of the three structurally differentiated zones of the joint, that is, the articular cartilage matrix, zone of calcified cartilage and underlying subchondral bone. Importantly, PS-OCT imaging was able to detect underlying matrix and bone changes not visible without dissection and/or microscopy.
Conclusion
PS-OCT has substantial potential to detect, non-invasively, sub-surface microstructural changes that are known to be associated with the early stages of joint tissue degeneration.}
}

2021

Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Matteo M. Bonsanto, Christian Hagel, Robert Huber, and Ralf Brinkmann,
Comparison of two optical coherence tomography systems to identify human brain tumor, Optical Society of America, Dez.2021. pp. EW1C.7.
DOI:10.1117/12.2616044
Bibtex: BibTeX
@inproceedings{Strenge:21,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT; Absorption coefficient; Attenuation coefficient; Fourier domain mode locking; Multiple scattering; Optical coherence tomography; Spectral domain optical coherence tomography},
pages = {EW1C.7},
publisher = {Optical Society of America},
title = {Comparison of two optical coherence tomography systems to identify human brain tumor},
year = {2021},
url = {https://doi.org/10.1117/12.2616044},
abstract = {The identification of ex vivo brain tumor tissue was investigated with two different optical coherence tomography systems exploiting two optical parameters. The optical parameters were calculated from semantically labelled OCT B-scans.},
}
Madita Göb, Sazgar Burhan, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm2/sec, in European Conferences on Biomedical Optics 2021 (ECBO) , Optical Society of America, Dez.2021. pp. EW3C.4.
DOI:10.1117/12.2616054
Bibtex: BibTeX
@inproceedings{Gob:21,
author = {Madita G\"{o}b and Sazgar Burhan and Wolfgang Draxinger and Jan Philip Kolb and Robert Huber},
booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT;Fourier domain mode locking; Image processing; Image quality; Optical coherence tomography; Temporal resolution; Three dimensional imaging},
pages = {EW3C.4},
publisher = {Optical Society of America},
title = {Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm$^2$/sec},
year = {2021},
url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-EW3C.4},
abstract = {We demonstrate a 3.3 MHz A-scan rate OCT for rapid scanning of large areas of human skin. The mosaicking performance and different OCT imaging modalities including intervolume speckle contrast are evaluated.},
}
Nicolas Detrez, Katharina Rewerts, Moritz Matthiae, Steffen Buschschlüter, Matteo M. Bonsanto, Dirk Theisen-Kunde, and Ralf Brinkmann,
Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography, in ECBO , Optical Society of America, Dez.2021. pp. EW4A.10.
ISBN:978-1-943580-95-8
Weblink: https://opg.optica.org/abstract.cfm?uri=ECBO-2021-EW4A.10
Bibtex: BibTeX
@inproceedings{Detrez:21,
author = {N. Detrez, K. Rewerts, M. Matthiae, S. Buschschlueter, M.M. Bonsanto, D. Theisen-Kunde and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT},
pages = {EW4A.10},
publisher = {Optical Society of America},
title = {Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography},
year = {2021},
url = {https://doi.org/10.1117/12.2615022},
abstract = {A precision air puff excitation system for MHz Optical Coherence Elastography in neurosurgery was developed. It enables non-contact soft-tissue excitation down to {\textmu}N, with direct, noncontact force determination via gas flow measurement.},
}
Katharina Rewerts, Moritz Matthiae, Nicolas Detrez, Steffen Buschschlüter, Matteo M. Bonsanto, Robert Huber, and Ralf Brinkmann,
Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation, in ECBO , Optical Society of America, Dez.2021. pp. ETh3A.3.
ISBN:978-1-943580-95-8
Weblink: https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETh3A.3
Bibtex: BibTeX
@inproceedings{Rewerts2021ECBO,
author = {K. Rewerts, M. Matthiae, N. Detrez, S. Buschschlueter, M.M. Bonsanto, R. Huber and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT},
pages = {ETh3A.3},
publisher = {Optical Society of America},
title = {Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation},
year = {2021},
url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-ETh3A.3},
abstract = {Tumor discrimination from healthy tissue is often performed by haptically probing tissue elasticity. We demonstrate non-contact elastography using air-puff excitation and tissue indentation measurement by phase-sensitive OCT with a 3.2 MHz FDML-laser.},
}
Hubertus Hakert, Matthias Eibl, Marie Tillich, Ralph Pries, Ralf Brinkmann, Barbara Wollenberg, Ludwig Bruchhage, Sebastian Karpf, and Robert Huber,
Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800  cm-1, Optics Letters , vol. 46(14), no. 14, pp. 3456-3459, 07 2021.
DOI:10.1364/OL.424726
Bibtex: BibTeX
@article{Hakert2021,
   author = {H. Hakert, M. Eibl, M. Tillich, R.Pries, G. Hüttmann, R. Brinkmann, B. Wollenberg, K-L. Bruchhage, S. Karpf and R. Huber},
   title = {Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800  cm-1},
   journal = {Optics Letters},
   volume = {46(14)},
   number = {14},
   pages = {3456-3459},
keywords = {AG-Huber_NL, Clinical applications, Master oscillator power amplifiers, Optical coherence tomography, Raman scattering, Stimulated Raman scattering, Stimulated scattering},
   DOI = {https://doi.org/10.1364/OL.424726},
   year = {2021},
   type = {Journal Article}
}
Tuula Peñate Medina, Jan Philip Kolb, Gereon Hüttmann, Robert Huber, Oula Peñate Medina, Naomi Larsen, Arianna Ferrari, Magdalena Rafecas, Mark Ellrichmann, Mariya S. Pravdivtseva, Mariia Anikeeva, Jana Humbert, Marcus Both, Jennifer Hundt, and Jan-Bernd Hövener,
Imaging Inflammation - From Whole Body Imaging to Cellular Resolution, Frontiers in immunology , vol. 12, pp. 692222-692222, 06 2021.
DOI:10.3389/fimmu.2021.692222
Bibtex: BibTeX
@article{PenateMedina2021,
   author = {Peñate Medina, T;Kolb, J P;Hüttmann, G;Huber, R;Peñate Medina, O;Ha, L;Ulloa, P;Larsen, N;Ferrari, A;Rafecas, M;Ellrichmann, M;Pravdivtseva, M S.;Anikeeva, M;Humbert, J;Both, M;Hundt, J E. and Hövener, J-B},
   title = {Imaging Inflammation - From Whole Body Imaging to Cellular Resolution},
   journal = {Frontiers in immunology},
keywords = {AG-Huber, MRI, PET, SPECT, optical imaging, Optical coherence tomography (OCT), precision medicine, Two-Photon microscopy (TPM), hyperpolarization},
   volume = {12},
   pages = {692222-692222},
   ISSN = {1664-3224},
   DOI = {10.3389/fimmu.2021.692222},
   url = {https://pubmed.ncbi.nlm.nih.gov/34248987
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8264453/},
   year = {2021},
   type = {Journal Article}
}
Christin Grill, Simon Lotz, Torben Blömker, Mark Schmidt, Wolfgang Draxinger, Jan Philip Kolb, Christian Jirauschek, and Robert Huber,
Superposition of two independent FDML lasers, in 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC) , 062021. pp. 1--1.
DOI:10.1109/CLEO/Europe-EQEC52157.2021.9542126
ISBN:978-1-6654-1876-8
Bibtex: BibTeX
@inproceedings{grill2021superposition,
  title={Superposition of two independent FDML lasers},
  author={C. Grill, S. Lotz, T. Bl{\"o}mker, M. Schmidt, W. Draxinger, J.P. Kolb, C. Jirauschek and R. Huber},
  booktitle={2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC)},
  pages={1--1},
  year={2021},
  organization={IEEE},
keywords={  AG-Huber_FDML},
url = {"https://ieeexplore.ieee.org/abstract/document/9542126"}
}
Tom Pfeiffer, Thomas Klein, Alexander Mlynek, Wolfgang Wieser, Simon Lotz, Christin Grill, and Robert Huber,
High finesse tunable Fabry-Perot filters in Fourier-domain modelocked lasers, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 062021.
DOI:10.1117/12.2583501
Bibtex: BibTeX
@inproceedings{Pfeiffer2021,
author = {T. Pfeiffer, T. Klein, A. Mlynek, W. Wieser, S. Lotz, C. Grill and R. Huber},
title = {{High finesse tunable Fabry-Perot filters in Fourier-domain modelocked lasers}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
abstract = {We demonstrate that the coherence roll-off and dynamic range of OCT systems using Fourier-domain mode-locked (FDML) lasers can be significantly improved by a fiber Fabry-Perot tunable filter (FFP-TF) with a finesse of more than 3000, a more than fivefold improvement over previous designs. In contrast to previous work, standard resampling using a pre-acquired signal (as in SD-OCT) with no k-clocking is sufficient for 20 nm and 100 nm sweep range, significantly reducing the system complexity. 3D-OCT imaging at 20 cm imaging range is demonstrated.},
keywords = {AG-Huber_FDML, AG-Huber_OCT, optical coherence tomography, FDML laser, swept source laser, high finesse, Fabry-Perot, MHz-OCT, OCT, tunable laser},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2583501}
}
Thomas Gottschall, Tobias Meyer-Zedler, Michael Schmitt, Robert Huber, Jürgen Popp, Andreas Tünnermann, and Jens Limpert,
Ultra-compact tunable fiber laser for coherent anti-Stokes Raman imaging, JRS , 06 2021.
DOI:10.1002/jrs.6171
Bibtex: BibTeX
@article{Gottschall2021,
   author = {T. Gottschall, T. Meyer-Zedler, M. Schmitt, R. Huber, J. Popp, A. Tünnermann and J. Limpert},
   title = {Ultra-compact tunable fiber laser for coherent anti-Stokes Raman imaging},
   journal = {JRS},
  keywords = { AG-Huber_NL, coherent anti-Stokes Raman scattering microscopy, four-wave mixing, nonlinear
microscopy, ultrafast laser},
   ISSN = {0377-0486},   
   url = {https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jrs.6171},
   year = {2021},
   type = {Journal Article}
}
Paul Strenge, Birgit Lange, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Matteo M. Bonsanto, Christian Hagel, Robert Huber, and Ralf Brinkmann,
Characterization of brain tumor tissue with 1310 nm optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032021. pp. 74 -- 80.
DOI:10.1117/12.2578409
Bibtex: BibTeX
@inproceedings{Strenge2021A,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
title = {{Characterization of brain tumor tissue with 1310 nm optical coherence tomography}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {74 -- 80},
abstract = {The separation of tumorous brain tissue and healthy brain tissue is still a big challenge in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. On the basis of a recently created labelled OCT dataset of ex vivo glioblastoma multiforme tumor samples the detection of brain tumor tissue and the identification of zones with varying degrees of infiltration of tumor cells was investigated. The identification was based on the optical properties, which were extracted by an exponential fit function. The results showed that a separation of tumorous tissue and healthy white matter based on these optical properties is possible. A support vector machine was trained on the optical properties to separate tumor from healthy white matter tissue, which achieved a sensitivity of 91% and a specificity of 76% on an independent training dataset.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578409}
}
Philipp Lamminger, Merle Loop, Julian Klee, Daniel Weng, Jan Philip Kolb, Matthias Strauch, Sebastian Karpf, and Robert Huber,
Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups, in Multimodal Biomedical Imaging XVI , SPIE, 032021.
DOI:10.1117/12.2578679
Bibtex: BibTeX
@Conference{Lamminger2021,
  author    = {P. Lamminger, M. Loop, J. Klee, D. Weng, J.P. Kolb, M. Strauch, S. Karpf and R. Huber},
  booktitle = {Multimodal Biomedical Imaging XVI},
  title     = {Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups},
  year      = {2021},
  publisher = {SPIE},
  doi       = {10.1117/12.2578679},
  keywords  = {AG-Huber_NL, AG-Huber_OCT},
}
Matthias Strauch, Jan Philip Kolb, Wolfgang Draxinger, Ann-Kathrin Popp, Melanie Wacker, Nadine Merg, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Sectioning-free virtual H&E histology with fiber-based two-photon microscopy, in SPIE BiOS , SPIE, 032021.
DOI:10.1117/12.2578334
Bibtex: BibTeX
@inproceedings{RN5318,
   author = {Strauch, M;Kolb, J P;Draxinger, W;Popp, A-K;Wacker, M;Merg, N;Hundt, J;Karpf, S and Huber, R},
   title = {Sectioning-free virtual H&E histology with fiber-based two-photon microscopy},
   booktitle = {SPIE BiOS},
   publisher = {SPIE},
   volume = {11648},
Year = {2021},
   DOI = {https://doi.org/10.1117/12.2578334},
   url = {https://doi.org/10.1117/12.2578334},
   type = {Conference Proceedings}
}
Christin Grill, Torben Blömker, Mark Schmidt, Dominic Kastner, Tom Pfeiffer, Jan Philip Kolb, Wolfgang Draxinger, Sebastian Karpf, Christian Jirauschek, and Robert Huber,
A detailed analysis of the coherence and field properties of an FDML laser by time resolved beat signal measurements, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 032021. pp. 242 -- 247.
DOI:10.1117/12.2578293
Bibtex: BibTeX
@inproceedings{Grill2021,
author = {C. Grill, T. Blömker, M. Schmidt, D. Kastner, T. Pfeiffer, J.P. Kolb, W. Draxinger, S. Karpf, C. Jirauschek and R. Huber},
title = {{A detailed analysis of the coherence and field properties of an FDML laser by time resolved beat signal measurements}},
volume = {11665},
booktitle = {Fiber Lasers XVIII: Technology and Systems},
editor = {Michalis N. Zervas},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {242 -- 247},
keywords = {AG-Huber_FDML, Fourier domain mode locking, FDML laser, laser beating , tunable laser, optical coherence tomography, OCT},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578293}
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Christian Hagel, Matteo M. Bonsanto, Robert Huber, and Ralf Brinkmann,
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , SPIE, 032021. pp. 66 -- 73.
DOI:10.1117/12.2578391
Bibtex: BibTeX
@inproceedings{Strenge2021,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, C. Hagel, M. Bonsanto, R. Huber and R. Brinkmann},
title = {{Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {66 -- 73},
abstract = {Optical coherence tomography (OCT) has the potential to become an additional imaging modality for surgical guidance in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. Interpretation of the images, however, is still a big challenge. A method to create a labeled OCT dataset based on ex vivo brain samples is introduced. The tissue samples were embedded in an agarose mold giving them a distinctive shape before images were acquired with two OCT systems (spectral domain (SD) and swept source (SS) OCT) and histological sections were created and segmented by a neuropathologist. Based on the given shape, the corresponding OCT images for each histological image can be determined. The transfer of the labels from the histological images onto the OCT images was done with a non-affine image registration approach based on the tissue shape. It was demonstrated that finding OCT images of a tissue sample corresponding to segmented histological images without any color or laser marking is possible. It was also shown that the set labels can be transferred onto OCT images. The accuracy of method is 26 ± 11 pixel, which translates to 192 ± 75 μm for the SS-OCT and 94 ± 43 μm for the SD-OCT. The dataset consists of several hundred labeled OCT images, which can be used to train a classification algorithm.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, image registration, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {https://doi.org/10.1117/12.2578391}
}
Simon Lotz, Christin Grill, Madita Göb, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision, Biomedical Optics Express , vol. 12(5), pp. 2604-2616, 03 2021.
DOI:10.1117/12.2578514
Bibtex: BibTeX
@article{Lotz2021,
   author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J.P. Kolb and R. Huber},
   title = {Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision},
   journal = {Biomedical Optics Express},
   volume = {12(5)},
   keywords={AG-Huber_FDML},
   pages = {2604-2616},
   url = {https://doi.org/10.1364/BOE.422898},
   year = {2021},
   type = {Journal Article}
}
Mark Schmidt, Christin Grill, Simon Lotz, Tom Pfeiffer, Robert Huber, and Christian Jirauschek,
Intensity pattern types in broadband Fourier domain mode-locked (FDML) lasers operating beyond the ultra-stable regime, Applied Physics B , vol. 127, no. 5, pp. 60, 02 2021.
DOI:10.1007/s00340-021-07600-1
Bibtex: BibTeX
@Article{Schmidt2021,
  author   = {M. Schmidt, C. Grill, S. Lotz, T. Pfeiffer, R. Hubert and C. Jirauschek},
  journal  = {Applied Physics B},
  title    = {Intensity pattern types in broadband Fourier domain mode-locked (FDML) lasers operating beyond the ultra-stable regime},
  year     = {2021},
  issn     = {1432-0649},
  number   = {5},
  pages    = {60},
  volume   = {127},
keywords={AG-Huber_FDML},
  abstract = {We report on the formation of various intensity pattern types in detuned Fourier domain mode-locked (FDML) lasers and identify the corresponding operating conditions. Such patterns are a result of the complex laser dynamics and serve as an ideal tool for the study of the underlying physical processes as well as for model verification. By numerical simulation we deduce that the formation of patterns is related to the spectral position of the instantaneous laser lineshape with respect to the transmission window of the swept bandpass filter. The spectral properties of the lineshape are determined by a long-term accumulation of phase-offsets, resulting in rapid high-amplitude intensity fluctuations in the time domain due to the narrow intra-cavity bandpass filter and the fast response time of the semiconductor optical amplifier gain medium. Furthermore, we present the distribution of the duration of dips in the intensity trace by running the laser in the regime in which dominantly dips form, and give insight into their evolution over a large number of roundtrips.},
  doi      = {10.1007/s00340-021-07600-1},
  refid    = {Schmidt2021},
}
Sonja Jäckle, Tim Eixmann, Florian Matysiak, Malte Maria Sieren, Marco Horn, Hinnerk Schulz-Hildebrandt, and Torben Pätz,
3D Stent Graft Guidance based on Tracking Systems for Endovascular Aneurysm Repair, Current Directions in Biomedical Engineering , vol. 7, no. 1, pp. 17--20, 2021.
DOI:doi:10.1515/cdbme-2021-1004
Datei: cdbme-2021-1004
Bibtex: BibTeX
@article{Jaeckle2021c,
author = {J{\"{a}}ckle, Sonja and Eixmann, Tim and Matysiak, Florian and Sieren, Malte Maria and Horn, Marco and Schulz-Hildebrandt, Hinnerk and H{\"{u}}ttmann, Gereon and P{\"{a}}tz, Torben},
doi = {doi:10.1515/cdbme-2021-1004},
journal = {Current Directions in Biomedical Engineering},
year = {2021},
number = {1},
pages = {17--20},
title = {{3D Stent Graft Guidance based on Tracking Systems for Endovascular Aneurysm Repair:}},
url = {https://doi.org/10.1515/cdbme-2021-1004},
volume = {7},
}
H. S. Seifert,
Single pulse optoacoustic temperature measurement, in ECBO , 2021.
DOI:10.1117/12.2615897
Bibtex: BibTeX
@inproceedings{Seifert2021,
   author = {Seifert, E;Abbas, H. S. and Brinkman, R},
   title = {Single pulse optoacoustic temperature measurement},
   booktitle = {ECBO},
DOI = {10.1117/12.2615897},
year = {2021},
   type = {Conference Proceedings}
}
Matthias Strauch, Jan Philip Kolb, Christian Rose, Nadine Merg, Jennifer Hundt, Christiane Kümpers, Sven Perner, Sebastian Karpf, and Robert Huber,
Quick sectioning-free H&E imaging of bulk tissue using multiphoton microscopy, in 33rd Congress of the ESP , 2021.
DOI:10.1007/s00428-021-03157-8
Bibtex: BibTeX
@Conference{Strauch2021,
  author    = {M. Strauch, J.P. Kolb, C. Rose, N. Merg, J. Hundt, C. Kümpers, S. Perner, S. Karpf and R. Huber},
  booktitle = {33rd Congress of the ESP},
  title     = {Quick sectioning-free H&E imaging of bulk tissue using multiphoton microscopy},
  year      = {2021},
  keywords  = {AG-Huber_NL},
}
Maximilian Büttner, Benjamin Luger, Wasim Abou Moulig, Bernd Junker, Carsten Framme, Christina Jacobson, Katharina Knoll, Amelie Pielen, and SRT Study Group-Theisen-Kunde, Brinkmann, Miura,Birngruber,
Selective retina therapy (SRT) in patients with therapy refractory persistent acute central serous chorioretinopathy (CSC): 3 months functional and morphological results, Graefes Arch Clin Exp Ophthalmol , vol. 259, no. 6, pp. 1401-1410, 2021.
DOI:10.1007/s00417-020-04999-9
Bibtex: BibTeX
@article{Büttner2021,
   author = {Büttner, M.;Luger, B.;Abou Moulig, W.;Junker, B.;Framme, C.;Jacobsen, C.;Knoll, K. and Pielen, A.; SRT Study Group(Brinkmann, R.; Miura, Y.)},
   title = {Selective retina therapy (SRT) in patients with therapy refractory persistent acute central serous chorioretinopathy (CSC): 3 months functional and morphological results},
   journal = {Graefes Arch Clin Exp Ophthalmol},
   volume = {259},
   number = {6},
   pages = {1401-1410},
   ISSN = {0721-832X (Print)
0721-832x},
   DOI = {10.1007/s00417-020-04999-9},
abstract = { PURPOSE: Central serous chorioretinopathy (CSC) is a disease presenting with detachment of the neurosensory retina and characteristic focal leakage on fluorescein angiography. The spontaneous remission rate is 84% within 6 months. In this study, the efficacy of selective retina therapy (SRT) was examined in patients with therapy refractory persistent acute CSC defined by symptoms for at least 6 months and persistent subretinal fluid (SRF) despite eplerenone therapy. MATERIAL AND METHODS: This is a prospective, monocentric observational study in 17 eyes (16 patients, mean age 42 years, 2 female). SRT was performed with the approved R:GEN laser (Lutronic, South Korea), a micropulsed 527-nm Nd:YLF laser device, with a train of 30 pulses of 1.7 μs at 100-Hz repetition rate at the point of focal leakage determined by fluorescein angiography (FA) at baseline (BSL). Visits on BSL, week 4 (wk4), and week 12 (wk12) included best corrected visual acuity (BCVA, logMar), central retinal thickness (CRT) on spectral domain optical coherence tomography (SD-OCT), and FA. Statistical analysis was performed by pair-by-pair comparisons of multiple observations in each case with Bonferroni correction for multiple testing. (IBM SPSS Statistics 25®). RESULTS: Mean CRT at BSL was 387.69 ± 110.4 μm. CRT significantly decreased by 106.31 μm in wk4 (95%-KI: 21.42-191.2; p = 0.01), by 133.63 μm in wk12 (95%-KI: 50.22-217.03; p = 0.001) and by 133.81 μm (95%-KI: 48.88-218.75; p = 0.001) compared to BSL. Treatment success defined as complete resolution of SRF occurred at wk4 in 7/17 eyes (35.3%) and at wk12 in 10/17 eyes (58.8%). Re-SRT was performed in 7/17 eyes (41.2%) after an average of 107.14 ± 96.59 days. Treatment success after Re-SRT was observed in 4/6 eyes (66.6%, 12 weeks after Re-SRT). Mean BCVA did not change significantly from BSL to any later timepoint after adjusting for multiple testing. Notably, eyes with treatment success showed better BCVA at all timepoints and gained more letters compared to failures. CONCLUSION: Single or repetitive SRT may be an effective and safe treatment in 2 of 3 patients suffering from acute persistent CSC after 6 months of symptoms or more. We observed complete resolution of SRF in around 60% of eyes 12 weeks after first SRT treatment and also 12 weeks after Re-SRT treatment in eyes with persistent or recurrent SRF. Results on the long-term course after SRT are still pending.},
keywords = { Central serous chorioretinopathy; Fluorescein angiography; Micropulse laser; OCT; Persistent acute disease; Selective retina treatment; Subretinal fluid. },
   year = {2021},
   type = {Journal Article}
}
Elisabeth Richert, Julia Papenkort, Claus von der Burchard, Alexa Klettner, Patrik Arnold, Ralph Lucius, Ralf Brinkmann, Carsten Framme, Johann Roider, and Jan Tode,
Selective retina therapy and thermal stimulation of the retina: different regenerative properties - implications for AMD therapy, BMC Ophthalmology , vol. 21(1), pp. 412, 2021.
Datei: s12886-021-02188-8
Bibtex: BibTeX
@article{Richert2021,
   title        = {Selective retina therapy and thermal stimulation of the retina: different regenerative properties - implications for AMD therapy},
   author       = {Richert, E;Papenkort, J;von der Burchard, C;Klettner, A;Arnold, P;Lucius, R;Brinkmann, R;Framme, C;Roider, J and Tode, J},
   year         = 2021,
   journal      = {BMC Ophthalmology},
   volume       = {21(1)},
   pages        = 412,
   issn         = {1471-2415},
   url          = {https://doi.org/10.1186/s12886-021-02188-8},
   keywords     = {Selective retina therapy (SRT), Thermal stimulation of the retina (TSR),  Age- related macular  degeneration (AMD), Regeneration, Rejuvenation},
   type         = {Journal Article}
}
A. Coker, and V. V. Yakovlev,
Synergistic effect of picosecond optical and nanosecond electrical pulses on dielectric breakdown in aqueous solutions, Photonics Research , vol. 9 (3), pp. 416-423, 2021.
DOI:10.1364/PRJ.411980
Bibtex: BibTeX
@article{Coker2021,
   author = {Coker, Z. N.;Liang, Xiao-Xuan;Kiester, A. S.;Noojin, G. D.;Bixler, J. N.;Ibey, B. L.;Vogel, A. and Yakovlev, V. V.},
   title = {Synergistic effect of picosecond optical and nanosecond electrical pulses on dielectric breakdown in aqueous solutions},
   journal = {Photonics Research},
   volume = {9 (3)},
   pages = {416-423},
   DOI = {10.1364/PRJ.411980},
 
   year = {2021},
   type = {Journal Article}
}
Aaron Doug Deen,
Spectroscopic analysis through thermoelastic optical coherence microscopy, in European Conferences on Biomedical Optics , SPIE, 2021.
Datei: 12.2616068
Bibtex: BibTeX
@inproceedings{Deen2021,
   author = {Doug Deen, A;Pfeiffer, T;van Beusekom, H;Essers, J;van der Steen, A F.;Huber, Rt;van Soest, G and Wang, T},
   title = {Spectroscopic analysis through thermoelastic optical coherence microscopy},
   booktitle = {European Conferences on Biomedical Optics},
   publisher = {SPIE},
year = {2021},
   volume = {11924},
   url = {https://doi.org/10.1117/12.2616068},
   type = {Conference Proceedings}
}
Viktoria Kleymann, Manuel A. Schaller, Mitsuru Wilson, Mario Mordmüller, Ralf Brinkmann, Karl Worthmann, and Matthias A. Müller,
State and parameter estimation for model-based retinal laser treatment, IFAC-PapersOnLine , vol. 54(6), pp. 244-250, 2021.
DOI:https://doi.org/10.1016/j.ifacol.2021.08.552
Datei: S2405896321013276
Bibtex: BibTeX
@article{Kleyman2021,
   author = {Kleyman, V;Schaller, M;Wilson, M;Mordmüller, M;Brinkmann, R;Worthmann, K and Müller, M.A.},
   title = {State and parameter estimation for model-based retinal laser treatment⁎⁎The collaborative project ”Temperature controlled retinal laser treatment” is funded by the German Research Foundation (DFG) under the project number 430154635 (MU 3929/3-1, WO 2056/7-1, BR 1349/6-1). MS was also funded by the DFG (grant WO 2056/2-1, project number 289034702). KW gratefully acknowledges funding by the German Research Foundation (DFG; grant WO 2056/6-1, project number 406141926)},
   journal = {IFAC-PapersOnLine},
   volume = {54(6)},
 
   pages = {244-250},
   ISSN = {2405-8963},
   DOI = {https://doi.org/10.1016/j.ifacol.2021.08.552},
   url = {https://www.sciencedirect.com/science/article/pii/S2405896321013276},
   year = {2021},
   type = {Journal Article}
}
Felix Hilge, Michael Evers, Malte Casper, Joshua Zev Glahn, Weeranut Phothong M.D., Garuna Kositratna M.D., Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, and Dieter Manstein M.D.,
Novel method to assess the impact of aging and sun exposure on skin morphology by optical coherence tomography, in Photonics in Dermatology and Plastic Surgery 2021 , Bernard Choi and Haishan Zeng, Eds. SPIE, 2021.
DOI:10.1117/12.2577822
Datei: 12.2577822
Bibtex: BibTeX
@inproceedings{10.1117/12.2577822,

title = {Novel method to assess the impact of aging and sun exposure on skin morphology by optical coherence tomography},

author = {Felix Hilge and Michael Evers and Malte Casper and Joshua Zev Glahn and Weeranut Phothong M.D. and Garuna Kositratna M.D. and Hinnerk Schulz-Hildebrandt and Gereon H\"{u}ttmann and Dieter Manstein M.D.},

editor = {Bernard Choi and Haishan Zeng},

url = {https://doi.org/10.1117/12.2577822},

doi = {10.1117/12.2577822},

year  = {2021},

date = {2021-01-01},

booktitle = {Photonics in Dermatology and Plastic Surgery 2021},

volume = {11618},

publisher = {SPIE},

organization = {International Society for Optics and Photonics},

keywords = {},

pubstate = {published},

tppubtype = {inproceedings}

}
G. Jäckle, and T. Pätz,
3D Stent Graft Guidance based on Tracking Systems for Endovascular Aneurysm Repair, Current Directions in Biomedical Engineering , vol. 7(1), pp. 17-20, 2021.
DOI:doi:10.1515/cdbme-2021-1004
Bibtex: BibTeX
@article{Jäckle-2021-1,
   author = {Jäckle, S.; Eixmann, T.; Matysiak, F.;Sieren, M.M.;Horn, M.; Schulz-Hildebrandt, H.;Hüttmann, G. and Pätz, T.},
   title = {3D Stent Graft Guidance based on Tracking Systems for Endovascular Aneurysm Repair},
   journal = {Current Directions in Biomedical Engineering},
   volume = {7(1)},
   Keywords = {endovascular navigation, stent graft system, fiber Bragg gratings, EM sensor},
   pages = {17-20},
   DOI = {doi:10.1515/cdbme-2021-1004},
   year = {2021},
   type = {Journal Article}
}
Mario Mordmüller,
Towards Model-based Control Techniques for Retinal Laser Treatment Using Only One Laser, in ECBO , 2021.
Datei: 12.2615851
Bibtex: BibTeX
@inproceedings{Mordmüller2021,
   author = {Mordmüller, M;Kleymann, V;Schaller, M;Wilson, M;Wothmann, K;Müller, M A and Brinkman, R},
   title = { Towards Model-based Control Techniques for Retinal Laser
Treatment Using Only One Laser},
   booktitle = {ECBO},
url = {https://doi.org/10.1117/12.2615851},
year = {2021},
   type = {Conference Proceedings}
}
Mario Mordmüller, Viktoria Kleymann, Manuel A. Schaller, Mitsuru Wilson, Karl Worthmann, Matthias A. Müller, and Ralf Brinkmann,
Towards Model-based Control Techniques for Retinal Laser Treatment Using Only One Laser, in ECBO , 2021.
Datei: 12.2615851
Bibtex: BibTeX
@inproceedings{Mordmüller2021,
   author = {Mordmüller, M;Kleymann, V;Schaller, M;Wilson, M;Wothmann, K;Müller, M A and Brinkman, R},
   title = { Towards Model-based Control Techniques for Retinal Laser
Treatment Using Only One Laser},
   booktitle = {ECBO},
url = {https://doi.org/10.1117/12.2615851},
year = {2021},
   type = {Conference Proceedings}
}
Mario Mordmüller, Viktoria Kleymann, Manuel A. Schaller, Mitsuru Wilson, Dirk Theisen-Kunde, Karl Worthmann, Matthias A. Müller, and Ralf Brinkmann,
Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate, Advanced Optical Technologies , 2021.
Datei: aot-2021-0041
Bibtex: BibTeX
@article{Mordmüller-2021,
   author = {Mordmüller, M;Kleyman, V;Schaller, M;Wilson, M;Theisen-Kunde, D;Worthmann, K;Müller, M.A and Brinkmann, R},
   title = {Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate},
   journal = {Advanced Optical Technologies},
Keywords = {extended Kalman filter; laser-coagulation; model predictive control; ophthalmology; photo-acoustics},
  
   url = {https://doi.org/10.1515/aot-2021-0041},
   year = {2021},
   type = {Journal Article}
}
Martin Ahrens, Christian Idel, Peter König, Gereon Hüttmann, and Hinnerk Schulz-Hildebrandt,
Voice coil based endomicroscopic optical coherence tomography probe for in vivo mucosa examination, in Endoscopic Microscopy XVI , Guillermo Tearney J M.D. and Thomas D Wang and Melissa J Suter, Eds. SPIE, 2021.
DOI:10.1117/12.2578787
Datei: 12.2578787
Bibtex: BibTeX
@inproceedings{10.1117/12.2578787,

title = {Voice coil based endomicroscopic optical coherence tomography probe for in vivo mucosa examination},

author = {Martin Ahrens and Christian Idel and Peter K\"{o}nig and Gereon H\"{u}ttmann and Hinnerk Schulz-Hildebrandt},

editor = {Guillermo Tearney J M.D. and Thomas D Wang and Melissa J Suter},

url = {https://doi.org/10.1117/12.2578787},

doi = {10.1117/12.2578787},

year  = {2021},

date = {2021-01-01},

booktitle = {Endoscopic Microscopy XVI},

volume = {11620},

publisher = {SPIE},

organization = {International Society for Optics and Photonics},

keywords = {},

pubstate = {published},

tppubtype = {inproceedings}

}
R Schenk, and S Kassumeh,
Advances in Imaging of Subbasal Corneal Nerves With Micro–Optical Coherence Tomography, Tvst , vol. 10 (13), pp. 22-22, 2021.
DOI:10.1167/tvst.10.13.22
Bibtex: BibTeX
@article{Schenk-2021,
   author = {Schenk, M S;Wartak, A;Buehler, V;Zhao, J;Tearney, G J;Birngruber, R and Kassumeh, S},
   title = {Advances in Imaging of Subbasal Corneal Nerves With Micro–Optical Coherence Tomography},
   journal = {Tvst},
keywords = {corneal nerves; micro–optical coherence tomography; subbasal plexus},
   volume = {10 (13)},
   pages = {22-22},
   ISSN = {2164-2591},
   DOI = {10.1167/tvst.10.13.22},

   year = {2021},
   type = {Journal Article}
}

E. Seifert, Kleingarn Philipp, Svenja Sonntag, Dirk Theisen-Kunde, Salvatore Grisanti, Reginald Birngruber, Yoko Miura, and Ralf Brinkmann,
Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime, Investigative Ophthalmology & Visual Science , vol. 62(3), pp. 32-32, 2021.
DOI:10.1167/iovs.62.3.32
Datei: iovs.62.3.32
Bibtex: BibTeX
@article{Seifert2021,
   author = {Seifert, E;Sonntag, S R;Kleingarn, P;Theisen-Kunde, D;Grisanti, S;Birngruber, R;Miura, Y and Brinkmann, R},
   title = {Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime},
   journal = {Investigative Ophthalmology & Visual Science},
   volume = {62(3)},
  
   pages = {32-32},
   ISSN = {1552-5783},
   DOI = {10.1167/iovs.62.3.32},
   url = {https://doi.org/10.1167/iovs.62.3.32},
   year = {2021},
   type = {Journal Article}
}
Michael Münter, Mario Pieper, Tabea Kohlfaerber, Ernst Bodenstorfer, Martin Ahrens, Christian Winter, Robert Huber, Peter König, Gereon Hüttmann, and Hinnerk Schulz-Hildebrandt,
Microscopic optical coherence tomography (mOCT) at 600 kHz for 4D volumetric imaging and dynamic contrast, Biomed. Opt. Express , vol. 12, pp. 6024-6039, 2021.
DOI:10.1364/BOE.425001
Bibtex: BibTeX
@article{Münter2021,
   author = {M. Münter, M. Pieper, T. Kohlfaerber, E. Bodenstorfer, M. Ahrens, C. Winter, R. Huber, P. König, G. Hüttmann and H. Schulz-Hildebrandt},
   title = {Microscopic optical coherence tomography (mOCT) at 600 kHz for 4D volumetric imaging and dynamic contrast},
   journal = {BiomedOptE},
   volume = {12(10)},
   Keywords = {CMOS cameras,Full field optical coherence tomography,High numerical aperture optics, Image processing,In vivo imaging,Medical imaging,Ag-Huber},
   pages = {6024-6039},
   DOI = {10.1364/BOE.425001},
  
   year = {2021},
   type = {Journal Article}
}
A S Krumm,
Fiber-based Fluorescence and Reflection Measurements during Laser Lithotripsy, in ECBO , 2021.
DOI:https://doi.org/10.1117/12.2614447
Bibtex: BibTeX
@inproceedings{Krumm-2021,
   author = {Krumm, L S;Lange, B;Ozimek, T;Wießmeyer, J R;Kramer, M W;Merseburger, A S and Brinkman, R},
   title = {Fiber-based Fluorescence and Reflection Measurements during Laser Lithotripsy},
Year = {2021},
   booktitle = {ECBO},
DOI = {https://doi.org/10.1117/12.2614447},
   type = {Conference Proceedings}
}
J. Workman F. Vanholsbeeck, and A. Thambyah,
Birefringence as a proxy for viscoelastic properties of cartilage using polarisation sensitive optical coherence tomography, in Optical Elastography and Tissue Biomechanics VIII , Kirill V. Larin and Giuliano Scarcelli, Eds. SPIE, 2021.
DOI:10.1117/12.2587181
Bibtex: BibTeX
@inproceedings{10.1117/12.2587181,
author = {F. Vanholsbeeck, M. Goodwin, M. Klufts, J. Workman and A. Thambyah},
title = {{Birefringence as a proxy for viscoelastic properties of cartilage using polarisation sensitive optical coherence tomography}},
volume = {11645},
booktitle = {Optical Elastography and Tissue Biomechanics VIII},
editor = {Kirill V. Larin and Giuliano Scarcelli},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
abstract = {Non-invasive identification, understanding and evaluation of articular cartilage damage is paramount for osteoarthritis researcher and clinician alike. Using polarisation sensitive optical coherence tomography together with impact and creep load, we use a range of metrics including birefringence to detect early signs of cartilage degeneration and gain new insights into the physiology of joint tissues},
year = {2021},
doi = {10.1117/12.2587181},
}
Simon Lotz, Christin Grill, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Characterization of the dynamics of an FDML laser during closed-loop cavity length control, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 2021. pp. 236 -- 241.
DOI:10.1117/12.2578514
Bibtex: BibTeX
@inproceedings{LotzLASE2021,
author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J. P. Kolb and R. Huber},
title = {{Characterization of the dynamics of an FDML laser during closed-loop cavity length control}},
volume = {11665},
booktitle = {Fiber Lasers XVIII: Technology and Systems},
editor = {Michalis N. Zervas},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {236 -- 241},
abstract = {In Fourier domain mode locked (FDML) lasers, extremely precise and stable matching of the filter tuning period and light circulation time in the cavity is essential for ultra-low noise operation. During the operation of FDML lasers, the ultra-low noise mode can be lost due to temperature drifts of the already temperature stabilized cavity resulting in increased intensity noise. Until now, the filter frequency is continuously regulated to match the changing light circulation time. However, this causes the filter frequency to constantly change by a few mHz and leads to synchronization issues in cases where a fixed filter frequency is desired. We present an actively cavity length controlled FDML laser and a robust and high precision feedback loop algorithm for maintaining ultra-low noise operation. Instead of adapting the filter frequency, the cavity length is adjusted by a motorized free space beam path to match the fixed filter frequency. The closed-loop system achieves a stability of ~0.18 mHz at a sweep repetition rate of ~418 kHz which corresponds to a ratio of 4×10<sup>-10</sup>. We investigate the coherence properties during the active cavity length adjustments and observe no noise increase compared to fixed cavity length. The cavity length control is fully functional and for the first time, offers the possibility to operate an FDML laser in sweet spot mode at a fixed frequency or phase locked to an external clock. This opens new possibilities for system integration of FDML lasers.},
keywords = {AG-Huber_FDML, FDML, Fourier domain mode locking, laser beating, tunable laser, optical coherence tomography, OCT},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578514}
}
M Cereda, and M D. Smet,
Clinical Evaluation of an Instrument-Integrated OCT-Based Distance Sensor for Robotic Vitreoretinal Surgery, Ophthalmology Science , vol. 1(4), pp. 100085, 2021.
DOI:https://doi.org/10.1016/j.xops.2021.100085
Bibtex: BibTeX
@article{Cereda-2021,
   author = {Cereda, M G;Parrulli, S;Douven, Y. G. M.;Faridpooya, K;van Romunde, S;Hüttmann, G;Eixmann, T;Schulz-Hildebrandt, H;Kronreif, G;Beelen, M and de Smet, M D.},
   title = {Clinical Evaluation of an Instrument-Integrated OCT-Based Distance Sensor for Robotic Vitreoretinal Surgery},
   journal = {Ophthalmology Science},
   volume = {1(4)},
  
   pages = {100085},
   ISSN = {2666-9145},
   DOI = {https://doi.org/10.1016/j.xops.2021.100085},
  
   year = {2021},
   type = {Journal Article}
}
Tabea Kohlfaerber, Mario Pieper, Peter König, Ramtin Rahmanzadeh, Gereon Hüttmann, and Hinnerk Schulz-Hildebrandt,
Comparison between dynamic microscopic OCT and autofluorescence multiphoton microscopy for label-free analysis of murine trachea, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A Izatt and James G Fujimoto, Eds. SPIE, 2021.
DOI:10.1117/12.2583811
Datei: 12.2583811
Bibtex: BibTeX
@inproceedings{10.1117/12.2583811,

title = {Comparison between dynamic microscopic OCT and autofluorescence multiphoton microscopy for label-free analysis of murine trachea},

author = {Tabea Kohlfaerber and Michael M\"{u}nter and Mario Pieper and Peter K\"{o}nig and Ramtin Rahmanzadeh and Gereon H\"{u}ttmann and Hinnerk Schulz-Hildebrandt},

editor = {Joseph A Izatt and James G Fujimoto},

url = {https://doi.org/10.1117/12.2583811},

doi = {10.1117/12.2583811},

year  = {2021},

date = {2021-01-01},

booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},

volume = {11630},

publisher = {SPIE},

organization = {International Society for Optics and Photonics},

keywords = {},

pubstate = {published},

tppubtype = {inproceedings}

}
Matthias Strauch, Jan Philip Kolb, Christian Rose, Nadine Merg, Christiane Kümpers, Sven Perner, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Comparison of Sectioning-free Multiphoton Histology to H&E FFPE imaging, in Virtuelle Pathologietage , 2021.
Bibtex: BibTeX
@Conference{Strauch2021b,
  author    = {M. Strauch, J.P. Kolb, C. Rose, N. Merg, J. Hundt, C. Kümpers, S. Perner, S. Karpf and R. Hubert},
  booktitle = {Virtuelle Pathologietage},
  title     = {Comparison of Sectioning-free Multiphoton Histology to H&E FFPE imaging},
  year      = {2021},
  keywords  = {AG-Huber_NL},
}
Christian Burri, Alessa Hutfilz, Lorenz Grimm, Simon Salzmann, Patrik Arnold, Boris Považay, Christoph Meier, Andreas Ebneter, Dirk Theisen-Kunde, and Ralf Brinkmann,
Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery, Applied Sciences , vol. 11(12), pp. 5535, 2021.
DOI:https://doi.org/10.3390/app11125535
Datei: 5535
Bibtex: BibTeX
@article{Burri2021,
   author = {Burri, C;Hutfilz, A;Grimm, L;Salzmann, S;Arnold, P;Považay, B;Meier, C;Ebneter, A;Theisen-Kunde, D and Brinkmann, R},
   title = {Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery},
   journal = {Applied Sciences},
   volume = {11(12)},
   
   pages = {5535},
   ISSN = {2076-3417},
   DOI = { https://doi.org/10.3390/app11125535},
   url = {https://www.mdpi.com/2076-3417/11/12/5535},
   year = {2021},
keywords = {selective retina therapy; viability assay; photocoagulation; microbubble formation;
thermomechanical damage; fringe washout; coherence-loss},
   type = {Journal Article}
}
M Hutfilz,
Laser Coagulation of Brain tissue at 1480 nm and 1940 nm wavelengths, in ECBO , Osa, 2021.
Datei: 12.2614437
Bibtex: BibTeX
@inproceedings{Hutfilz2021,
   author = {Hutfilz, A;Theisen-Kunde, D;Bonsanto, M and Brinkman, R},
   title = {Laser Coagulation of Brain tissue at 1480 nm and 1940 nm wavelengths},
   booktitle = {ECBO},
url = {https://doi.org/10.1117/12.2614437},
   publisher = {Osa},
year = {2021},
   type = {Conference Proceedings}
}
Akika Kyo, Manabu Yamamoto, Kumiko Hirayama, Takeya Kohno, Dirk Theisen-Kunde, Ralf Brinkmann, Yoko Miura, and Shigeru Honda,
Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy, Sci Rep , vol. 11(1), pp. 8973, 2021.
DOI:10.1038/s41598-021-88372-8
Bibtex: BibTeX
@article{Kyo-2021,
   author = {Kyo, A.;Yamamoto, M.;Hirayama, K.;Kohno, T.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.},
   title = {Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy},
   journal = {Sci Rep},
   volume = {11(1)},
  
   pages = {8973},
   ISSN = {2045-2322},
   DOI = {10.1038/s41598-021-88372-8},
   year = {2021},
   type = {Journal Article}
}
Hinnerk Schulz-Hildebrandt, Martin Ahrens, Elisa Wilken, Cornelia Holzhausen, Peter König, and Gereon Hüttmann,
Endo-microscopic optical coherence tomography (emOCT) with dynamic contrast, in Endoscopic Microscopy XVI , Guillermo Tearney J M.D. and Thomas D Wang and Melissa J Suter, Eds. SPIE, 2021.
DOI:10.1117/12.2575733
Datei: 12.2575733
Bibtex: BibTeX
@inproceedings{10.1117/12.2575733,

title = {Endo-microscopic optical coherence tomography (emOCT) with dynamic contrast},

author = {Hinnerk Schulz-Hildebrandt and Martin Ahrens and Michael M\"{u}nter and Elisa Wilken and Tabea Kohlf\"{a}rber and Cornelia Holzhausen and Peter K\"{o}nig and Gereon H\"{u}ttmann},

editor = {Guillermo Tearney J M.D. and Thomas D Wang and Melissa J Suter},

url = {https://doi.org/10.1117/12.2575733},

doi = {10.1117/12.2575733},

year  = {2021},

date = {2021-01-01},

booktitle = {Endoscopic Microscopy XVI},

volume = {11620},

publisher = {SPIE},

organization = {International Society for Optics and Photonics},

keywords = {},

pubstate = {published},

tppubtype = {inproceedings}

}
Svenja Sonntag, Eric Seifert, Maximilian Hamann, Britta Lewke, Dirk Theisen-Kunde, Salvatore Grisanti, Ralf Brinkmann, and Yoko Miura,
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
DOI:https://www.mdpi.com/2075-1729/11/6/555
Datei: 555
Bibtex: BibTeX
@article{Miura2021-2,
   author = {Sonntag, S R;Seifert, E;Hamann, M;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y},
   title = {Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States},
   journal = {Life},
   volume = {11(6)},
  keywords = {retinal laser treatment; metabolic change; fluorescence lifetime imaging ophthalmoscopy},
   pages = {555},
   ISSN = {2075-1729},
   url = {https://www.mdpi.com/2075-1729/11/6/555},
   year = {2021},
   type = {Journal Article}
}
Yoko Miura,
Fluorescence Lifetime Imaging Ophthalmoscopy—FLIO, Nippon Laser Igakkaishi , vol. advpub, 2021.
DOI:10.2530/jslsm.jslsm-42_0008
Bibtex: BibTeX
@article{Miura-3,
   author = {Miura, Y},
   title = {Fluorescence Lifetime Imaging Ophthalmoscopy—FLIO},
   journal = {Nippon Laser Igakkaishi},
   volume = {advpub},
   DOI = {10.2530/jslsm.jslsm-42_0008},
   year = {2021},
   type = {Journal Article}
}
B L Ibey, and N. Linz,
Front Matter: Volume 11640, in SPIE BiOS , SPIE, 2021.
Datei: 12.2596605
Bibtex: BibTeX
@inproceedings{Linz2021,
   author = {Ibey, B L and Linz, N},
   title = {Front Matter: Volume 11640},
   booktitle = {SPIE BiOS},
Year = {2021},
   publisher = {SPIE},
   volume = {11640},
   url = {https://doi.org/10.1117/12.2596605},
   type = {Conference Proceedings}
}
S Prasuhn, and Mahdy Ranjbar,
Influence of Retinal Microsecond Pulse Laser Treatment in Central Serous Chorioretinopathy: A Short-Term Optical Coherence Tomography Angiography Study, J ClinMed , vol. 10(11), pp. 2418, 2021.
Datei: 2418
Bibtex: BibTeX
@article{Prasuhn2021,
   author = {Prasuhn, M;Miura, Y;Tura, A.;Rommel, Felix;Kakkassery, V;Sonntag, S;Grisanti, S and Ranjbar, M},
   title = {Influence of Retinal Microsecond Pulse Laser Treatment in Central Serous Chorioretinopathy: A Short-Term Optical Coherence Tomography Angiography Study},
   journal = {J ClinMed},
   volume = {10(11)},
   
   pages = {2418},
   ISSN = {2077-0383},
   url = {https://www.mdpi.com/2077-0383/10/11/2418},
   year = {2021},
   type = {Journal Article}
}
T Jäckle, and T Preusser,
Instrument localisation for endovascular aneurysm repair: Comparison of two methods based on tracking systems or using imaging, The International Journal of Medical Robotics and Computer Assisted Surgery , vol. 17(6), pp. e2327, 2021.
DOI:https://doi.org/10.1002/rcs.2327
Bibtex: BibTeX
@article{Jäckle-2021-2,
   author = {Jäckle, S;Lange, A;García-Vázquez, V;Eixmann, T;Matysiak, F;Sieren, M M;Horn, M;Schulz-Hildebrandt, H;Hüttmann, G;Ernst, F;Heldmann, St;Pätz, T and Preusser, T},
   title = {Instrument localisation for endovascular aneurysm repair: Comparison of two methods based on tracking systems or using imaging},
   journal = {The International Journal of Medical Robotics and Computer Assisted Surgery},
   volume = {17(6)},
  
   pages = {e2327},
   ISSN = {1478-5951},
   DOI = {https://doi.org/10.1002/rcs.2327},
 
   year = {2021},
   type = {Journal Article}
}
Sonja Jäckle, Annkristin Lange, Veronica Garcia-Vazquez, Tim Eixmann, Florian Matysiak, Malte Maria Sieren, Marco Horn, Hinnerk Schulz-Hildebrandt, Floris Ernst, Stefan Heldmann, Torben Pätz, and Tobias Preusser,
Instrument localisation for endovascular aneurysm repair: Comparison of two methods based on tracking systems or using imaging, International Journal of Medical Robotics and Computer Assisted Surgery , vol. 17, no. 6, pp. e2327, 2021.
DOI:10.1002/rcs.2327
Bibtex: BibTeX
@article{Jackle2021,
abstract = {Background: In endovascular aneuysm repair (EVAR) procedures, medical instruments are currently navigated with a two-dimensional imaging based guidance requiring X-rays and contrast agent. Methods: Novel approaches for obtaining the three-dimensional instrument positions are introduced. Firstly, a method based on fibre optical shape sensing, one electromagnetic sensor and a preoperative computed tomography (CT) scan is described. Secondly, an approach based on image processing using one 2D fluoroscopic image and a preoperative CT scan is introduced. Results: For the tracking based method, average errors from 1.81 to 3.13 mm and maximum errors from 3.21 to 5.46 mm were measured. For the image-based approach, average errors from 3.07 to 6.02 mm and maximum errors from 8.05 to 15.75 mm were measured. Conclusion: The tracking based method is promising for usage in EVAR procedures. For the image-based approach are applications in smaller vessels more suitable, since its errors increase with the vessel diameter.},
author = {J{\"{a}}ckle, Sonja and Lange, Annkristin and Garcia-Vazquez, Veronica and Eixmann, Tim and Matysiak, Florian and Sieren, Malte Maria and Horn, Marco and Schulz-Hildebrandt, Hinnerk and H{\"{u}}ttmann, Gereon and Ernst, Floris and Heldmann, Stefan and P{\"{a}}tz, Torben and Preusser, Tobias},
doi = {10.1002/rcs.2327},
file = {:Users/schulz-hildebrandt/Documents/Mendeley Desktop/J{\"{a}}ckle et al/International Journal of Medical Robotics and Computer Assisted Surgery/J{\"{a}}ckle et al. - 2021 - Instrument localisation for endovascular aneurysm repair Comparison of two methods based on tracking systems or.pdf:pdf},
issn = {1478596X},
journal = {International Journal of Medical Robotics and Computer Assisted Surgery},
keywords = {2D/3D registration,3D localisation,computer-assisted surgery,electromagnetic tracking system,endovascular procedures,fibre optical shape sensing},
number = {6},
pages = {e2327},
year = {2021},
title = {{Instrument localisation for endovascular aneurysm repair: Comparison of two methods based on tracking systems or using imaging}},
volume = {17}
}
R Theisen-Kunde,
Intraoperative Imaging in Neurosurgery, in ECBO , 2021.
Datei: 12.2614855
Bibtex: BibTeX
@inproceedings{Theisen-Kunde2021,
   author = {Theisen-Kunde, D;Draxinger, W;Bonsanto, M;Strenge, P;Detrez, N;Huber, R and Brinkman, R},
   title = {Intraoperative Imaging in Neurosurgery},
   booktitle = {ECBO},
URL = {https://doi.org/10.1117/12.2614855},
year = {2021},
   type = {Conference Proceedings}
}
Eric Seifert, Jan Tode, Amelie Pielen, Dirk Theisen-Kunde, Carsten Framme, Johann Roider, Yoko Miura, Reginald Birngruber, and Ralf Brinkmann,
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
Datei: S2213597921000756
Bibtex: BibTeX
@article{Seifert2021,
   author = {Seifert, E;Tode, J;Pielen, A;Theisen-Kunde, D;Framme, C;Roider, J;Miura, Y;Birngruber, R and Brinkmann, R},
   title = {Algorithms for optoacoustically controlled selective retina therapy (SRT)},
   journal = {Photoacoustics},
Keywords = {SRT; Lasers in medicine; Ophthalmology; RPE; Selectivity; Algorithm; Retina therapy; Optoacoustics; Feedback},
   volume = {25},
   pages = {100316},
   ISSN = {2213-5979},
   url = {https://www.sciencedirect.com/science/article/pii/S2213597921000756},
   year = {2021},
   type = {Journal Article}
}

2020

Mark Schmidt, Christin Grill, Robert Huber, and Christian Jirauschek,
Coherence of Fourier Domain Mode-Locked (FDML) Lasers in the Ultra-Stable Regime, in 2020 International Conference Laser Optics (ICLO) , Nov.2020. pp. 1-1.
DOI:10.1109/ICLO48556.2020.9285488
Bibtex: BibTeX
@INPROCEEDINGS{Schmidt2020ICLO,
  author={M. {Schmidt}, C. {Grill}, R. {Huber} and C. {Jirauschek}},
  booktitle={2020 International Conference Laser Optics (ICLO)}, 
  title={Coherence of Fourier Domain Mode-Locked (FDML) Lasers in the Ultra-Stable Regime}, 
  year={2020},
keywords={AG-Huber_FDML},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/ICLO48556.2020.9285488},
}
Tom Pfeiffer, Madita Göb, Wolfgang Draxinger, Sebastian Karpf, Jan Philip Kolb, and Robert Huber,
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
DOI:10.1364/BOE.402477
Bibtex: BibTeX
@article{Pfeiffer:20,
author = {T. Pfeiffer, M. G\"{o}b, W. Draxinger, S. Karpf, J.P. Kolb and R. Huber},
journal = {Biomed. Opt. Express},
keywords = {AG-Huber_OCT; High speed imaging; Image quality; Optical coherence tomography; Swept lasers; Swept sources; Systems design},
number = {11},
pages = {6799--6811},
publisher = {OSA},
title = {Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging},
volume = {11},
month = {Nov},
year = {2020},
doi = {10.1364/BOE.402477},
abstract = {In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to \&\#x223C;100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121\&\#x00A0;dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.},
}
Elisabeth Richert, Claus von der Burchard, Alexa Klettner, Patrik Arnold, Ralph Lucius, Ralf Brinkmann, Johann Roider, and Jan Tode,
Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models, 09 2020.
Datei: S2590153220300112
Bibtex: BibTeX
@article{RN5351,
   author = {Richert, E;von der Burchard, C;Klettner, A;Arnold, P;Lucius, R;Brinkmann, R;Roider, J and Tode, J},
   title = {Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models},
   journal = {Cytokine: X},
   volume = {2},
   number = {3},
   pages = {100031},
   ISSN = {2590-1532},
   DOI = {https://doi.org/10.1016/j.cytox.2020.100031},
   url = {https://www.sciencedirect.com/science/article/pii/S2590153220300112},
   year = {2020},
   type = {Journal Article}
}
Matthias Strauch, Jan Philip Kolb, Daniel Weng, Melanie Wacker, Wolfgang Draxinger, Nadine Merg, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Weblink: https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf
Bibtex: BibTeX
@InProceedings{Strauch2020,
  author    = {M. Strauch, J.P. Kolb, D. Weng, M. Wacker, W. Draxinger, N. Merg, J. Hundt, S. Karpf and R. Huber},
  booktitle = {104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie},
  title     = {Two-photon microscopy for sectioning-free virtual {H&E} imaging},
URL = {https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf},
  year      = {2020},
  keywords  = {AG-Huber_NL},
}
Mark Schmidt, Tom Pfeiffer, Christin Grill, Robert Huber, and Christian Jirauschek,
Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers, OSA Continuum , vol. 3, no. 6, pp. 1589--1607, 06 2020. Optical Society of America.
DOI:10.1364/OSAC.389972
Bibtex: BibTeX
@article{schmidt2020self,
  title={Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers},
  author={M. {Schmidt}, T. {Pfeiffer}, C. {Grill}, R. {Huber} and C. {Jirauschek}},
  journal={OSA Continuum},
  volume={3},
  number={6},
  pages={1589--1607},
  year={2020},
keywords={AG-Huber_FDML},
url={https://doi.org/10.1364/OSAC.389972}, 
  publisher=  {Optical Society of America}
}
Matthias Strauch,
Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses, Delft University of Technology, Delft, 03 2020.
DOI:10.4233/uuid:b61aa64e-cba4-44c0-8d16-93440e028611
ISBN:978-94-028-1994-6
Bibtex: BibTeX
@PhdThesis{Strauch2020,
  author      = {M. Strauch},
  title       = {Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses},
  institution = {Delft University of Technology},
  year        = {2020},
  date        = {2020-03-30},
  type        = {phdthesis},
  subtitle    = {Spectral Imaging and Surface Manipulation on Liquid Lenses},
  language    = {English},
  isbn        = {978-94-028-1994-6},
  pagetotal   = {151},
  doi         = {10.4233/uuid:b61aa64e-cba4-44c0-8d16-93440e028611},
  
  abstract    = {This thesis focusses on two aspects of tunable optics: Fabry-P{\'e}rot interferometers with a variable distance between their mirrors and electrowetting liquid lenses. The need for a device to detect child abuse has motivated us to design and build a camera that can detect the chemical composition of the upper skin layers of a bruise using a self-made Fabry-P{\'e}rot interferometer. The research described in the first part of this thesis has shown that wide-angle spectral imaging can be achieved with compact and cost-effective cameras using Fabry-P{\'e}rot interferometers. Designs with a full field of 90° in which the Fabry-P{\'e}rot interferometer is mounted either in front of an imaging system or behind a telecentric lens system are presented and analysed. The dependency of the spectral resolution on the numerical aperture of the lens system is derived and its value as a design criterion is shown. It is shown that the telecentric camera design is preferable over the collimated design for bruise imaging with a Fabry-P{\'e}rot interferometer.The idea to use a liquid lens for spectral imaging has directed the research towards a new concept of controlling surface waves on the surface of a liquid lens. We investigate and model surface waves because they decrease the imaging quality during fast focal switching. We propose a model that describes the surface modes appearing on a liquid lens and that predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using geometrical optics and Fresnel propagation, and the model is verified experimentally. The model of the surface oscillations is used to develop a technique to create aspheric surface shapes on commercially available electrowetting liquid lenses. The surface waves on the liquid lens are described by Bessel functions of which a linear combination can be used to create any circularly symmetrical aspheric lens shape at an instant of time. With these surface profiles, one can realise a large set of circularly symmetrical wavefronts and hence intensity distributions of beams transmitted by the lens. The necessary liquid lens actuation to achieve a desired shape is calculated via a Hankel transform and confirmed experimentally. The voltage signal can be repeated at video rate. Measurements taken with a Mach-Zehnder interferometer confirm the model of the surface waves. The capabilities and limitations of the proposed method are demonstrated using the examples of a Bessel surface, spherical aberration, an axicon, and a top hat structure.},
keywords = {AG-Huber},
  address     = {Delft},
  publisher   = {Delft University of Technology},
  school      = {Delft University of Technology},
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Matteo M. Bonsanto, Christian Hagel, Robert Huber, and Ralf Brinkmann,
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
DOI:10.1117/12.2545659
Bibtex: BibTeX
@inproceedings{Strenge2020,
author = {P. Strenge and B. Lange and C. Grill and W. Draxinger and M. M. Bonsanto and C. Hagel and R. Huber and R. Brinkmann},
title = {{Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis}},
volume = {11228},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {82 -- 89},
keywords = {AG-Huber_OCT, Optical coherence tomography, OCT, FDML Laser, MHz-OCT, brain tumor, brain imaging, neurosurgery},
year = {2020},

URL = {  https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11228/112282O/Segmented-OCT-data-set-for-depth-resolved-brain-tumor-detection/10.1117/12.2545659.short}
}
Christin Grill, Simon Lotz, Torben Blömker, Dominic Kastner, Tom Pfeiffer, Mark Schmidt, Wolfgang Draxinger, Christian Jirauschek, and Robert Huber,
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
DOI:10.1117/12.2545794
Bibtex: BibTeX
@inproceedings{Grill2020,
author = {C. {Grill}, S. {Lotz}, T. {Blömker}, D. {Kastner}, T. {Pfeiffer}, S. {Karpf}, M. {Schmidt}, W. {Draxinger}, C. 
 {Jirauschek} and R. {Huber}},
title = {{Beating of two FDML lasers in real time}},
volume = {11260},
booktitle = {Fiber Lasers XVII: Technology and Systems},
editor = {Liang Dong},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {132 -- 138},
keywords = {AG-Huber_FDML, FDML laser, fiber lasers, beat signal, OCT, Optical Coherence Tomography, Fourier domain mode locking},
year = {2020},
doi = {10.1117/12.2545794},

}
D Matkivsky, and G Gelikonov,
Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function, Journal of Biophotonics , vol. 13(10), pp. e202000112, 2020.
DOI:10.1002/jbio.202000112
Bibtex: BibTeX
@article{Matkivsky2020,
   author = {Matkivsky, V;Moiseev, A;Shilyagin, P;Rodionov, A;Spahr, H;Pfäffle, C;Hüttmann, G;Hillmann, D and Gelikonov, G},
   title = {Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function},
   journal = {Journal of Biophotonics},
   volume = {13(10)},
   pages = {e202000112},
   ISSN = {1864-063X},
   DOI = {10.1002/jbio.202000112},
   year = {2020},
   type = {Journal Article}
}
G Deen,
Thermo-elastic optical coherence microscopy, in Proc.SPIE , International Society for Optics and Photonics, 2020. pp. 112520H.
DOI:10.1117/12.2550998
Datei: 12.2550998
Bibtex: BibTeX
@inproceedings{Deen2020,
   author = {Deen, A D;Pfeiffer, T;H, van Beusekom.;Essers, J;Huber, R;van der Steen, A.F.W.;van Soest, G and Wang, T},
   title = {Thermo-elastic optical coherence microscopy},
   booktitle = {Proc.SPIE},
   volume = {11252},
abstarct = {The absorption of laser pulses by tissue leads not only to the generation of acoustic waves, but also to nanometer
to sub-micrometer scale displacement. After the initial expansion, a quasi-steady state is achieved in a few
microseconds. Previously we introduced the concept of thermo-elastic optical coherence tomography (TE-OCT)
to \visualise" the rapid thermo-elastic expansion by measuring the Doppler phase shift rather than \listening"
to the acoustic wave as in photoacoustic imaging. In this study, we built a microscopic setup for high-speed
3D TE-OCT imaging, by means of thermo-elastic optical coherence microscopy (TE-OCM). The repetition rate
of pulsed laser was set to 100 Hz and the line rate of the OCT system is 1.5 MHz. The OCT beam and the
laser pulse were focused upon the same location on the sample FWHM spot sizes of 300 m for the pulsed laser
and 40 m FWHM for the OCT beam. For each laser pulse, an M-mode OCT image consisting of 90 A-lines
was acquired. The Doppler phase shift was extracted by comparing the phase signal before and after the pulse
arrival. Within 6 minutes, a 3D TE-OCM image (10 x 10 x 4 mm3) can be acquired and processed. Imaging
experiments were carried out in swine meat using 1210 nm excitation wavelength to highlight lipid in tissue.
The results show that no signicant displacement was detected in swine muscle while strong displacement was
observed in lipid, owing to the optical absorption features. Furthermore, fatty tissue is easily identied in the
3D TE-OCM image while the conventional OCT images provides the structural information.},

   pages = {112520H},
   DOI = {10.1117/12.2550998},
   url = {https://doi.org/10.1117/12.2550998},
   type = {Conference Proceedings}
}
Y. Hirayama, Shigeru Honda, Kumiko Hirayama, Manabu Yamamoto, Takeya Kohno, Akika Kyo, Dirk Theisen-Kunde, Ralf Brinkmann, and Yoko Miura,
Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome, Graefes Arch Clin Exp Ophthalmol , vol. 259, pp. 387-393, 2020.
DOI:10.1007/s00417-020-04931-1
Bibtex: BibTeX
@article{Hirayama2020,
   author = {Hirayama, K.;Yamamoto, M.;Kohno, T.;Kyo, A.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.},
   title = {Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome},
   journal = {Graefes Arch Clin Exp Ophthalmol},
   ISSN = {0721-832x},
 volume = {259},
   pages = {387-393},
   DOI = {10.1007/s00417-020-04931-1},
   year = {2020},
   type = {Journal Article}
}
Manabu Yamamoto, Yoko Miura, Akika Kyo, Kumiko Hirayama, Takeya Kohno, Dirk Theisen-Kunde, Ralf Brinkmann, and Shigeru Honda,
Selective retina therapy for subretinal fluid associated with choroidal nevus, Amer J Ophthalm Case Rep , vol. 19, pp. 100794, 2020.
DOI:https://doi.org/10.1016/j.ajoc.2020.100794
Bibtex: BibTeX
@article{yamamoto2020,
   author = {Yamamoto, M;Miura, Y;Kyo, A;Hirayama, K;Kohno, T;Theisen-Kunde, D;Brinkmann, R and Honda, S},
   title = {Selective retina therapy for subretinal fluid associated with choroidal nevus},
   journal = {Amer J Ophthalm Case Rep},
   volume = {19},
   pages = {100794},
   ISSN = {2451-9936},
keywords = {Laser therapy, Choroidal tumor, Retinal pigment epithelium, Retinal disorder},
   DOI = {https://doi.org/10.1016/j.ajoc.2020.100794},
   
   year = {2020},
   type = {Journal Article}
}
G Burchard, and J Roider,
Self-examination low-cost full-field OCT (SELFF-OCT) for patients with various macular diseases, Graefe's Archive for Clinical and Experimental Ophthalmology , 2020.
Datei: s00417-020-05035-6
Bibtex: BibTeX
@article{von-derBurchard2020,
   author = {von der Burchard, C;Moltmann, M.;Tode, J;Ehlken, C;Sudkamp, H;Theisen-Kunde, D;König, I;Hüttmann, G and Roider, J},
   title = {Self-examination low-cost full-field OCT (SELFF-OCT) for patients with various macular diseases},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   ISSN = {1435-702X},
   
   url = {https://doi.org/10.1007/s00417-020-05035-6},
   year = {2020},
   type = {Journal Article}
}
Cuiping Yao, Florian Rudnitzki, Yida He, Zhenxi Zhang, and Ramtin Rahmanzadeh,
Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods, JBio , 2020.
DOI:10.1002/jbio.202000017
Bibtex: BibTeX
@article{Rahmanzadeh-2020,
   author = {Yao, C;Rudnitzki, F;He, Y;Zhang, Z;Hüttmann, G and Rahmanzadeh, R},
   title = {Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods},
   journal = {JBio},
   
   ISSN = {1864-063X},
   DOI = {10.1002/jbio.202000017},
  Year = {2020},
   type = {Journal Article}
}
Jalali,
Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates, Nature Communications , vol. 11(1), pp. 2062, 2020.
Datei: s41467-020-15618-w
Bibtex: BibTeX
@article{Karpf-2020,
   author = {S. Karpf, C.T. Riche, D. Di Carlo, A. Goel, W.A. Zeiger, A. Suresh, C. Portera-Cailliau B. and Jalali},
   title = {Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates},
   journal = {Nature Communications},
   volume = {11(1)},
  keywords={},
   pages = {2062},
   ISSN = {2041-1723},
  
   url = {https://doi.org/10.1038/s41467-020-15618-w},
   year = {2020},
   type = {Journal Article}
}
G J. Elhardt,
Stromal Nerve Imaging and Tracking Using Micro-Optical Coherence Tomography, Translational Vision Science & Technology , vol. 9(5), pp. 6-6, 2020.
Datei: tvst.9.5.6
Bibtex: BibTeX
@article{Birngruber2020,
   author = {Elhardt, C;Wertheimer, C M.;Wartak, A;Zhao, J;Leung, H M;Kassumeh, S A.;Yin, B;Tearney, G J. and Birngruber, R},
   title = {Stromal Nerve Imaging and Tracking Using Micro-Optical Coherence Tomography},
   journal = {Translational Vision Science & Technology},
   volume = {9(5)},
  
   pages = {6-6},
   ISSN = {2164-2591},
   Keywords = {optical coherence tomography; micro-OCT; imaging;corneal nerves; diabetes},
   url = {https://doi.org/10.1167/tvst.9.5.6},
   year = {2020},
   type = {Journal Article}
}
Tianshi Wang, Aaron Doug Deen, Heleen van Beusekom, and Antonius F. W. van der Steen,
Thermo-elastic optical coherence microscopy, in Advanced Chemical Microscopy for Life Science and Translational Medicine , International Society for Optics and Photonics, 2020. pp. 112520H.
DOI:https://doi.org/10.1117/12.2550998
Datei: 12.2550998.short
Bibtex: BibTeX
@inproceedings{Deen2020,
   author = {Deen, Aaron Doug;Pfeiffer, Tom;Van Beusekom, Heleen;Essers, Jeroen;Huber, Robert;van der Steen, Antonius FW;Van Soest, Gijs and Wang, Tianshi},
   title = {Thermo-elastic optical coherence microscopy},
   booktitle = {Advanced Chemical Microscopy for Life Science and Translational Medicine},
   publisher = {International Society for Optics and Photonics},
url = { https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11252/112520H/Thermo-elastic-optical-coherence-microscopy/10.1117/12.2550998.short}
   volume = {11252},
   pages = {112520H},
   type = {Conference Proceedings}
}
Yoko Miura,
Retinal Pigment Epithelium Organ Culture, in Retinal Pigment Epithelium in Health and Disease , Springer, 2020, pp. 307-324.
Datei: 978-3-030-28384-1_18
Bibtex: BibTeX
@inbook{Miura2020,
   author = {Miura, Yoko},
   title = {Retinal Pigment Epithelium Organ Culture},
   booktitle = {Retinal Pigment Epithelium in Health and Disease},
   publisher = {Springer},
   pages = {307-324},
   year = {2020},
   type = {Book Section},
URL = { https://link.springer.com/chapter/10.1007/978-3-030-28384-1_18}
}
M Jäckle, and T P\"{a}tz,
Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair, Int J Comp Assis Radiology and Surgery , 2020.
ISBN:1861-6429
Datei: s11548-020-02167-2
Bibtex: BibTeX
@article{jackle2020,
title = {Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair},
author = {Jäckle,S; Garcia-Vazquez,V; Eixmann, T; Matysiak, F; von Haxthausen,F; Sieren; M m; Schulz-Hildebrandt, H;  H\"{u}ttmann, G; Ernst, F; Kleemann, M and P\"{a}tz, T},
url = {https://doi.org/10.1007/s11548-020-02167-2},

isbn = {1861-6429},
year = {2020},
date = {2020-04-06},
journal = {Int J  Comp Assis Radiology and Surgery},
abstract = {During endovascular aneurysm repair (EVAR) procedures, medical instruments are guided with two-dimensional (2D) fluoroscopy and conventional digital subtraction angiography. However, this requires X-ray exposure and contrast agent is used, and the depth information is missing. To overcome these drawbacks, a three-dimensional (3D) guidance approach based on tracking systems is introduced and evaluated.},
keywords = {HSH},
pubstate = {published},
tppubtype = {article}
}
N Koop,
Beständig durch Mikrodefekte, Pharma+Food , 2020.
Datei:
Bibtex: BibTeX
@article{Koop2020,
   author = {Koop, N},
   title = {Beständig durch Mikrodefekte},
   journal = {Pharma+Food},
   url = { https://www.pharma-food.de/bestaendig-durch-mikrodefekte/},
   year = {2020},
   type = {Journal Article}
}
A Holzhey, and Mahdy Ranjbar,
Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss, Journal of visualized experiments: JoVE , no. 158, 2020.
DOI:10.3791/60542
Bibtex: BibTeX
@article{Holzhey2020,
   author = {Holzhey, A;Sonntag, S;Rendenbach, J;Ernesti, J S;Kakkassery, V;Grisanti, S;Reinholz, F;Freidank, S;Vogel, A and Ranjbar, M},
   title = {Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss},
   journal = {Journal of visualized experiments: JoVE},
   number = {158},
   ISSN = {1940-087X},
DOI = {10.3791/60542 },
   year = {2020},
   type = {Journal Article}
}
J A. Kilin, and J-P Wolf,
Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles, ACS Nano , vol. 14(4), pp. 4087-4095, 2020.
Datei: acsnano.9b08813
Bibtex: BibTeX
@article{Vogel-2020,
   author = {Kilin, V;Campargue, G;Fureraj, I;Sakong, S;Sabri, T;Riporto, F;Vieren, A;Mugnier, Y;Mas, C;Staedler, D;Collins, J M;Bonacina, L;Vogel, A;Capobianco, J A. and Wolf, J-P},
   title = {Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles},
   journal = {ACS Nano},
   volume = {14(4)},
   
   pages = {4087-4095},
   ISSN = {1936-0851},
   
   url = {https://doi.org/10.1021/acsnano.9b08813},
   year = {2020},
   type = {Journal Article}
}
H. Schneider, and R. Haak,
An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations, J Clin Med , vol. 9(10), 2020.
DOI:10.3390/jcm9103257
Bibtex: BibTeX
@article{schneider2020,
   author = {Schneider, H.;Ahrens, M.;Strumpski, M.;Ruger, C.;Hafer, M.;Huettmann, G.;Theisen-Kunde, D.;Schulz-Hildebrandt, H. and Haak, R.},
   title = {An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations},
   journal = {J Clin Med},
   volume = {9(10)},
   keywords = {OCT; intraoral probe; carious lesions; caries diagnosis; dental restorations},
   ISSN = {2077-0383 (Print)
2077-0383 (Linking)},
   DOI = {10.3390/jcm9103257},
   
   year = {2020},
   type = {Journal Article}
}
R Wartak, and G J. Tearney,
Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures, Biomedical Optics Express , vol. 11(10), pp. 5920-5933, 2020.
DOI: https://doi.org/10.1364/BOE.402971
Bibtex: BibTeX
@article{Wartak2020,
   author = {Wartak, A;Schenk, M S.;Bühler, V;Kassumeh, S A.;Birngruber, R and Tearney, G J.},
   title = {Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures},
keywords = {High numerical aperture optics,Image metrics,Image processing,Image quality,Optical coherence tomography,Optical imaging},
   journal = {Biomedical Optics Express},
   volume = {11(10)},
  
DOI = { https://doi.org/10.1364/BOE.402971},
   pages = {5920-5933},
   
   year = { 2020},
   type = {Journal Article}
}
Markus Luecking, Ralf Brinkmann, Scarlett Ramos, Wilhelm Stork, and Nico Heussner,
Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage, CompBioMed , vol. 122, pp. 103835, 2020.
DOI:https://doi.org/10.1016/j.compbiomed.2020.103835
Bibtex: BibTeX
@article{brinkmann2020-2,
   author = {Luecking, M;Brinkmann, R;Ramos, Sc;Stork, W and Heussner, N},
   title = {Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage},
   journal = {CompBioMed},
   volume = {122},
   pages = {103835},
   ISSN = {0010-4825},
   DOI = {https://doi.org/10.1016/j.compbiomed.2020.103835},
 
   year = {2020},
   type = {Journal Article}
}
Antonio López-Marín, Geert Springeling, Robert Beurskens, Heleen van Beusekom, Antonius F. W. van der Steen, Arjun D. Koch, Brett E. Bouma, and Tianshi Wang,
Shadow-free motorized capsule enables accurate beam positioning and sectorized OCT imaging of the esophagus, in Endoscopic Microscopy XV , International Society for Optics and Photonics, 2020. pp. 112140O.
Datei: 12.2545689
Bibtex: BibTeX
@inproceedings{Lopez2020,
   author = {López-Marín, Antonio;Springeling, Geert;Beurskens, Robert;Van Beusekom, Heleen;van der Steen, Antonius;Koch, Arjun D;Bouma, Brett E;Huber, Robert A;Van Soest, Gijs and Wang, Tianshi},
   title = {Shadow-free motorized capsule enables accurate beam positioning and sectorized OCT imaging of the esophagus},
   booktitle = {Endoscopic Microscopy XV},
   publisher = {International Society for Optics and Photonics},
   volume = {11214},
   pages = {112140O},
url = { https://doi.org/10.1117/12.2545689},
   type = {Conference Proceedings}
}
Elisabeth Richert, Julia Papenkort, Alexa Klettner, Jan Tode, Stefan Koinzer, Ralf Brinkmann, Christine Fink, Thomas Roeder, Ralph Lucius, and Johann Roider,
Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR), Lasers in Surgery and Medicine , 2020.
DOI:DOI 10.1002/lsm.23288
Bibtex: BibTeX
@article{Richert2020,
   author = {Richert, E;Papenkort, J;Klettner, A;Tode, J;Koinzer, S;Brinkmann, R;Fink, C;Roeder, T;Lucius, R. and Roider, J},
   title = {Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR)},
   journal = {Lasers in Surgery and Medicine},
Keywords = {age‐related macular degeneration; thermal stimulation therapy of the retinal pigment epithelium;
matrix metalloproteases; pigment epithelium derived factor; retinal pigment epithelium; vascular endothelial
growth factor; transforming growth factor‐β},
   DOI = {DOI 10.1002/lsm.23288},
   year = {2020},
   type = {Journal Article}
}
Viktoria Kleymann, Hannaes Gernandt, Karl Worthmann, Hossam S. Abbas, Ralf Brinkmann, and Matthias A. Müller,
Modeling parameter for temperature controlled retinal laser therapies, DeGruyter-at-Automatisierungstechnik , vol. 68(11), pp. 953-966, 2020.
Datei: article-p953.xml
Bibtex: BibTeX
@article{Kleymann2020,
   author = {Kleymann, V;Gernandt, H;Worthmann, K;Hossam, S.A;Brinkmann, R and Müller, A.M},
   title = {Modeling parameter for temperature controlled retinal laser therapies },
   journal = {DeGruyter-at-Automatisierungstechnik},
   volume = {68(11)},
keywords = {retinal photocoagulation, parametric model order
reduction, identification},
   pages = {953-966},
  URL = {https://www.degruyter.com/view/journals/auto/68/11/article-p953.xml},
   year = {2020},
   type = {Journal Article}
}

Michael Münter, Mario Pieper, Malte Casper, Martin Ahrens, Tabea Kohlfaerber, Ramtin Rahmanzadeh, Peter König, Gereon Hüttmann, and Hinnerk Schulz-Hildebrandt,
Dynamic contrast in scanning microscopic OCT, Optic Letters , 2020.
Datei: 2003.00006
Bibtex: BibTeX
@article{Münter2020,
   author = {Münter, M;Endt, M v;Pieper, M;Casper, M;Ahrens, M;Kohlfaerber, T;Rahmanzadeh, R;König, P;Hüttmann, G and Schulz-Hildebrandt, H},
   title = {Dynamic contrast in scanning microscopic OCT},
   journal = {Optic Letters},
url = {https://arxiv.org/abs/2003.00006},
   year = {2020},
   type = {Journal Article}
}
R R Wertheimer,
Refractive Changes After Corneal Stromal Filler Injection for the Correction of Hyperopia, J Refractive Surg , no. 6(36), pp. 406--413, 2020.
Datei: refractive-changes-after-corneal-stromal-filler-injection-for-the-correction-of-hyperopia
Bibtex: BibTeX
@article{Wertheimer2020,
author = {Wertheimer, C M; Brandt, K; Kaminsky, S; Elhardt, C; Kassumeh, S A; Pham, L; Schulz-Hildebrandt, H; Priglinger, S; Anderson, R R and Birngruber, R},

url = {https://www.healio.com/ophthalmology/journals/jrs/2020-6-36-6/%7B8e6aaf40-922c-4998-9c7b-39b47135ec61%7D/refractive-changes-after-corneal-stromal-filler-injection-for-the-correction-of-hyperopia},
journal = {J Refractive Surg},
number = {6(36)},
pages = {406--413},
title = {Refractive Changes After Corneal Stromal Filler Injection for the Correction of Hyperopia},

date = {2020-06-14},
year = {2020},
keywords ={mOCT, HSH}
}
Matthias Strauch, Jan Philip Kolb, Nadine Merg, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Evaluation of two-photon fluorescence microscopy for sectioning-free H&E imaging of different tissues, in 32nd Congress of the ESP and XXXIII International Congress of the IAP , 2020.
DOI:10.1007/s00428-020-02938-x
Bibtex: BibTeX
@InProceedings{Strauch2020a,
  author    = {M. Strauch, J.P. Kolb, N. Merg, J. Hundt, S. Karpf and R. Huber},
  booktitle = {32nd Congress of the ESP and XXXIII International Congress of the IAP},
  title     = {Evaluation of two-photon fluorescence microscopy for sectioning-free {H&E} imaging of different tissues},
  year      = {2020},
  keywords  = {AG-Huber_NL},
}
R. R. Kassumeh,
Corneal Stromal Filler Injection as a Novel Approach to Correct Presbyopia—An Ex Vivo Pilot Study, TVST , vol. 9(7), pp. 30-30, 2020.
Datei: tvst.9.7.30
Bibtex: BibTeX
@article{Kassumeh2020,
   author = {Kassumeh, S;Luther, J K.;Wertheimer, C M.;Brandt, K;Schenk, M S.;Priglinger, S G.;Wartak, A;Apiou-Sbirlea, G.;Anderson, R. R. and Birngruber, R},
   title = {Corneal Stromal Filler Injection as a Novel Approach to Correct Presbyopia—An Ex Vivo Pilot Study},
   journal = {TVST},
   volume = {9(7)},
  keywords = { presbyopia correction; corneal filler; refractive surgery; femtosecond laser; hyaluronic acid; bifocality},

   pages = {30-30},
   ISSN = {2164-2591},
   
   url = {https://doi.org/10.1167/tvst.9.7.30},
   year = {2020},
   type = {Journal Article}
}
G Fischer, and A Gebert,
High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures, Cell and Tissue Research , pp. 1-8, 2020.
Datei: s00441-020-03167-z
Bibtex: BibTeX
@article{Fischer2020,
   author = {Fischer, T;Klinger, A;von Smolinski, D;Orzekowsky-Schroeder, R;Nitzsche, F;Bölke, T;Vogel, A;Hüttmann, G and Gebert, A},
   title = {High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures},
   journal = {Cell and Tissue Research},
   pages = {1-8},
   ISSN = {1432-0878},
   url = {https://doi.org/10.1007/s00441-020-03167-z},
   year = {2020},
   type = {Journal Article}
}

In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT, The International Journal of Cardiovascular Imaging , 2020.
Datei: s10554-020-01796-7
Bibtex: BibTeX
@article{cecchetti2020vitro,

   author = {L. Cecchetti, T. Wang, A. Hoogendoorn, K.T. Witberg, J.M.R. Ligthart, J. Daemen, H.M. van Beusekom, T. Pfeiffer, R. Huber, J.J. Wentzel, A.F.W. van der Steen and G. van Soest},
   title = {In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT},
   journal = {The International Journal of Cardiovascular Imaging},
   ISSN = {1573-0743},
   
   url = {https://doi.org/10.1007/s10554-020-01796-7},
   year = {2020},
   type = {Journal Article}
}
 
keywords = {AG-Huber_OCT},
 
G Pieper, and P K\"{o}nig,
Intravital microscopic optical coherence tomography imaging to assess mucus mobilizing interventions for muco-obstructive lung disease in mice, American Journal of Physiology-Lung Cellular and Molecular Physiology , vol. 318, no. 3, pp. 518-524, 2020. American Physiological Society Rockville, MD.
DOI:10.1152/ajplung.00287.2019
Bibtex: BibTeX
@article{pieper2020intravital,
title = {Intravital microscopic optical coherence tomography imaging to assess mucus mobilizing interventions for muco-obstructive lung disease in mice},
author = {Pieper,P; Schulz-Hildebrandt, H; Mall,Marcus A; H\"{u}ttmann, G and K\"{o}nig, P},
doi = {10.1152/ajplung.00287.2019},
year = {2020},
date = {2020-02-26},
journal = {American Journal of Physiology-Lung Cellular and Molecular Physiology},
volume = {318},
number = {3},
pages = {518-524},
publisher = {American Physiological Society Rockville, MD},
abstract = {Airway mucus obstruction is a hallmark of chronic lung diseases such as cystic fibrosis, asthma and COPD, and the development of more effective mucus mobilizing therapies remains an important unmet need for patients with these muco-obstructive lung diseases. However, methods for sensitive visualization and quantitative assessment of immediate effects of therapeutic interventions on mucus clearance in vivo are lacking. In this study, we determined if newly developed high-speed microscopic optical coherence tomography (mOCT) is sensitive to detect and compare in vivo effects of inhaled isotonic saline, hypertonic saline and bicarbonate on mucus mobilization and clearance in Scnn1b-transgenic mice with muco-obstructive lung disease. In vivomOCT imaging showed that inhaled isotonic saline-induced rapid mobilization of mucus that was mainly transported as chunks from the lower airways of Scnn1b-transgenic mice. Hypertonic saline mobilized a significantly greater amount of mucus that showed a more uniform distribution compared to isotonic saline. Addition of bicarbonate to isotonic saline had no effect on mucus mobilization, but also led to a more uniform mucus layer compared to treatment with isotonic saline alone. mOCT can detect differences in response to mucus mobilizing interventions in vivo, and may thus support the development of more effective therapies for patients with muco-obstructive lung diseases.},
keywords = {mOCT,OCT},
pubstate = {published},
tppubtype = {article}
}
Elisabeth Richert, Sofya Bartsch, Jost Hillenkamp, Felix Treumer, Jan Tode, Claus von der Burchard, Ralf Brinkmann, Alexa Klettner, and Johann Roider,
Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums, Klin Monatsbl Augenheilkd , vol. 237(02), pp. 192-201, 2020.
DOI:10.1055/a-0838-5633
Datei: a-0838-5633
Bibtex: BibTeX
@article{Brinkmann2020,
   author = {Richert, E;Bartsch, S;Hillenkamp, J;Treumer, F;Tode, J;von der Burchard, C;Brinkmann, R;Klettner, A K and Roider, J},
   title = {Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums},
   journal = {Klin Monatsbl Augenheilkd},
   volume = {237(02)},
   
   pages = {192-201},
   ISSN = {0023-2165},
   DOI = {10.1055/a-0838-5633},
   year = {2020},
   type = {Journal Article}
}
A E. Rakhymzhan, and R A. Niesner,
Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging, Cytometry Part A , vol. 97, no. 5, pp. 515-527, 2020.
DOI:10.1002/cyto.a.24012
Bibtex: BibTeX
@article{Schulz-Hildebrandt-2020,
   author = {Rakhymzhan, A;Reuter, L;Raspe, R;Bremer, D;Günther, R;Leben, R;Heidelin, J;Andresen, V;Cheremukhin, S;Schulz-Hildebrandt, H;Bixel, M G.;Adams, R H.;Radbruch, H;Hüttmann, G;Hauser, A E. and Niesner, R A.},
   title = {Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging},
  year = {2020},
   journal = {Cytometry Part A},
   volume = {97},
   number = {5},
   pages={515-527},
   ISSN = {1552-4922},
   DOI = {10.1002/cyto.a.24012},
   type = {Journal Article}
}
B L Ibey, and N. Linz,
Optical Interactions with Tissue and Cells XXXI, in Proc. of SPIE Vol , 2020. pp. 1123801-1.
DOI:10.1117/12.2569811
ISBN:ISBN: 9781510632394
Bibtex: BibTeX
@inproceedings{Linz2020,
   author = {Ibey, B L and Linz, N},
   title = {Optical Interactions with Tissue and Cells XXXI},
   booktitle = {Proc. of SPIE Vol},
   volume = {11238},
   pages = {1123801-1},
year = {2020},
   ISBN = {ISBN: 9781510632394},
   DOI = {10.1117/12.2569811},
   type = {Conference Proceedings}
}
S. Freidank, and N. Linz,
Optical Vortex Beam for Gentle and Ultraprecise Intrastromal Corneal Dissection in Refractive Surgery, TVST , vol. 9(10), pp. 22-22, 2020.
Datei: tvst.9.10.22
Bibtex: BibTeX
@article{Freidank2020,
   author = {Freidank, S;Vogel, A and Linz, N},
   title = {Optical Vortex Beam for Gentle and Ultraprecise Intrastromal Corneal Dissection in Refractive Surgery},
   journal = {TVST},
   volume = {9(10)},
   
   pages = {22-22},
   ISSN = {2164-2591},
 
   url = {https://doi.org/10.1167/tvst.9.10.22},
   year = {2020},
   type = {Journal Article}
}
Paula Enzian, Christian Schell, Astrid Link, Carina Malich, Ralph Pries, Barbara Wollenberg, and Ramtin Rahmanzadeh,
Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH, Molecular Pharmaceutics , 2020.
DOI:10.1021/acs.molpharmaceut.9b01173
Bibtex: BibTeX
@article{Enzian2020,
   author = {Enzian, P.;Schell, C.;Link, A.;Malich, C.;Pries, R.;Wollenberg, B and Rahmanzadeh, R},
   title = {Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH},
   journal = {Molecular Pharmaceutics},
   ISSN = {1543-8384},
   DOI = {10.1021/acs.molpharmaceut.9b01173},
   
   year = {2020},
   type = {Journal Article}
}
Matthias Müller, Ramtin Rahmanzadeh, Thao Tran, Jan Kappelhoff, Eman Aburieda Akam, Peter Caravan, Thomas Jüstel, Kathryn D Held, R.Rox Anderson, and Martin Purschke,
Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells, Particle and Particle Systems Characterization , 2020.
DOI:10.1002/ppsc.202000201
Datei: 0
Bibtex: BibTeX
@article{Müller2020,
   author = {Müller M;Rahmanzadeh R;Tran T;Kappelhoff J;Akam EA;Caravan P;Jüstel T;Held KD;Anderson R and M, and Purschke},
   title = {Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells},
   journal = {Particle and Particle Systems Characterization },
   year = {2020},
   type = {Journal Article},
url = { https://onlinelibrary.wiley.com/toc/15214117/0/0}
}
Manabu Yamamoto, Yoko Miura, Kumiko Hirayama, Takeya Kohno, Daijiro Kabata, Dirk Theisen-Kunde, Ralf Brinkmann, and Shigeru Honda,
Predictive factors of outcome of selective retina therapy for diabetic macular edema, International Ophthalmology , 2020.
Datei: s10792-020-01288-6
Bibtex: BibTeX
@article{Miura2020-2,
   author = {Yamamoto, M;Miura, Y;Hirayama, K;;Kohno, T;Kabata, D;Theisen-Kunde, D;Brinkmann, R and Honda, S;},
   title = {Predictive factors of outcome of selective retina therapy for diabetic macular edema},
   journal = {International Ophthalmology},
   ISSN = {1573-2630},
   
   url = {https://doi.org/10.1007/s10792-020-01288-6},
   year = {2020},
   type = {Journal Article}
}
M Palczewska, and K Palczewski,
Noninvasive two-photon optical biopsy of retinal fluorophores, Proceedings of the National Academy of Sciences , pp. 202007527, 2020.
DOI:10.1073/pnas.2007527117
Bibtex: BibTeX
@article{Palczewska-2020,
   title        = {Noninvasive two-photon optical biopsy of retinal fluorophores},
   author       = {Palczewska, G;Boguslawski, J;Stremplewski, P;Kornaszewski, L;Zhang, J;Dong, Z;Liang, Xiao-Xuan;Gratton, E;Vogel, A;Wojtkowski, M and Palczewski, K},
   year         = 2020,
   journal      = {Proceedings of the National Academy of Sciences},
   pages        = 202007527,
   doi          = {10.1073/pnas.2007527117},
   type         = {Journal Article}
}

2019

Paula Enzian, Astrid Link, Christian Schell, Carina Malich, and Ramtin Rahmanzadeh,
Light-induced permeabilization of liposomes, vol. 11070, 08 2019. Proc.SPIE.
Datei: 12.2526071
Bibtex: BibTeX
@Proc{Enzian2019,
   author = {Enzian, P.;Link, A.;Schell, C.;Malich, C. and Rahmanzadeh, R.},
   title = {Light-induced permeabilization of liposomes},
   publisher = {Proc.SPIE},
   volume = {11070},
   series = {17th International Photodynamic Association World Congress},
   
   url = {https://doi.org/10.1117/12.2526071},
   year = {2019},
   type = {Book}
}
Antonio López-Marín, Geert Springeling, Robert Beurskens, Heleen van Beusekom, Antonius F. W. van der Steen, Arjun D. Koch, Brett E. Bouma, Robert Huber, Gijs van Soest, and Tianshi Wang,
Motorized capsule for shadow-free OCT imaging and synchronous beam control, Opt Lett , vol. 44, no. 15, pp. 3641-3644, 08 2019. Optica Publishing Group.
DOI:10.1364/OL.44.003641
Bibtex: BibTeX
@article{Lopez-Marin:19,
author = {Antonio L\'{o}pez-Mar\'{i}n and Geert Springeling and Robert Beurskens and Heleen van Beusekom and Antonius F. W. van der Steen and Arjun D. Koch and Brett E. Bouma and Robert Huber and Gijs van Soest and Tianshi Wang},
journal = {Opt. Lett.},
keywords = {Image reconstruction; Light beams; Magnetic fields; Optical coherence tomography; Optical imaging; Reflector design},
number = {15},
pages = {3641--3644},
publisher = {Optica Publishing Group},
title = {Motorized capsule for shadow-free OCT imaging and synchronous beam control},
volume = {44},
month = {Aug},
year = {2019},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-44-15-3641},
doi = {10.1364/OL.44.003641},
abstract = {We demonstrate a tethered motorized capsule for unobstructed optical coherence tomography (OCT) imaging of the esophagus. By using a distal reflector design, we avoided the common shadow artifact induced by the motor wires. A synchronous driving technique features three types of beam-scanning modes of the capsule, i.e., circumferential beam scanning, localized beam scanning, and accurate beam positioning. We characterized these three modes and carried out ex vivo imaging experiments using the capsule. The results show that the capsule can potentially be a useful tool for diagnostic OCT imaging and OCT-guided biopsy and therapy of the esophagus.},
}
Yoko Miura, Wolfgang Draxinger, Christin Grill, Tom Pfeiffer, Salvatore Grisanti, and Robert Huber,
MHz-OCT for low latency virtual reality guided surgery: first wet lab experiments on ex-vivo porcine eye, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 072019. pp. 110780E.
DOI:10.1117/12.2527123
Bibtex: BibTeX
@inproceedings{10.1117/12.2527123,
author = {Yoko Miura and Wolfgang Draxinger and Christin Grill and Tom Pfeiffer and Salvatore Grisanti and Robert Huber},
title = {{MHz-OCT for low latency virtual reality guided surgery: first wet lab experiments on ex-vivo porcine eye
}},
volume = {11078},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media III},
editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {110780E},
abstract = {MHz-OCT systems based on FDML swept laser sources combined with the massive parallel processing capabilities of modern computer hardware enable volumetric imaging, processing and stereoscopic display at video rates. The increasing image quality and speed might enable new fields of application where the volumetric OCT completely replaces stereoscopic microscopes instead of being a mere supplement. Aside from the depth resolving capability, a particular advantage is the ability to display a whole image volume from arbitrary points of view without the need to move the actual microscope or to rotate the patient’s eye. Purely digital microscopy is already offered as alternative to traditional through-an-eyepiece surgical microscope. We explore the use of virtual reality to present digital OCT microscopy images to a trained surgeon, carrying out a series of surgical procedures ex-vivo on a porcine eye model.},
keywords = {virtual reality, surgery guidance , real-time OCT, user experience},
year = {2019},
doi = {10.1117/12.2527123},
URL = {https://doi.org/10.1117/12.2527123}
}
Daniel Weng, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Matthias Strauch, Matthias Eibl, Philipp Lamminger, Sebastian Karpf, and Robert Huber,
Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , IEEE, 062019. pp. 1-1.
DOI:10.1109/CLEOE-EQEC.2019.8872571
Bibtex: BibTeX
@INPROCEEDINGS{8872571,
  author={Weng, Daniel and Hakert, Hubertus and Blömker, Torben and Kolb, Jan Philip and Strauch, Matthias and Eibl, Matthias and Lamminger, Philipp and Karpf, Sebastian and Huber, Robert},
  booktitle={2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions}, 
  year={2019},
  volume={},
  number={},
  pages={1-1},
  abstract={Summary form only given. Two-photon microscopy is a powerful technique for in vivo imaging, due to its high penetration depth and axial sectioning. Usually excitation wavelengths in the near infrared are used. However, most fluorescence techniques for live cell imaging require labeling with exogenous fluorophores. It has been shown that shorter wavelengths can be used to excite the autofluorescence of endogenous proteins, e.g. tryptophan. Recently we demonstrated a fully fiber-based laser source built around a directly modulated, ytterbium amplified 1064 nm laser diode with sub-nanosecond pulses for two-photon imaging [2]. The overall system enables to capture high-speed fluorescence lifetime imaging (FLIM) with single pulse excitation. Here, we extend the spectral range of this laser source by frequency doubling it to 532nm to achieve two-photon excited fluorescence microscopy (TPM) in the ultraviolett (UV) range to harness endogenous autofluorescence. In this presentation we explore first TPM results of tryptophan to investigate signal levels and fi delity before transitioning to biological tissues. It has been shown that TPM of endogenous tryptophan can be used to visualize immune system activity in vivo. Our laser source could be a cheap, flexible and fiber-based alternative to the OPO-based Ti:Sa Lasers currently employed. The basic concept of our design is to shift the wavelength of the pulsed fiber-based master oscillator power amplifier (MOPA) by second-harmonic generation (SHG) using phase-matching in a KTP crystal. This generates a coherent output at 532nm at a maximal peak power of 500W. We achieved a maximum conversion efficiency of about 17%. After the SHG module, the 532nm light is coupled into a single-mode fiber and delivered to a home built microscope. A 40x microscope objective is used to excite the sample and epi-collect the fluorescence. The fluorescence is recorded on a UV-enhanced photomultiplier tube (PMT). For a proof of concept measurement, crystalized tryptophan was imaged. Here we show signals of pure tryptophan, with laser parameters of 1MHz repetition rate and 100ps pulse duration. We used spectral bandpass fi lters in order to detect only fluorescence signal, however, from crystalized tryptophan we observed an unexpected short lifetime. We have recently shown that we can shift our laser output from 1064nm to longer wavelengths. By shifting to 1180nm and frequency doubling to 590nm a more efficient fluorescence excitation of tryptophan can be achieved. In the future we aim at in vivo imaging with our setup.},
  keywords={},
  doi={10.1109/CLEOE-EQEC.2019.8872571},
  ISSN={},
  month={June}}
Jan Philip Kolb, Wolfgang Draxinger, Julian Klee, Tom Pfeiffer, Matthias Eibl, Thomas Klein, Wolfgang Wieser, and Robert Huber,
Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates, PLOS ONE , vol. 14, no. 7, pp. e0213144, 03 2019.
DOI:10.1371/journal.pone.0213144
Bibtex: BibTeX
@article{Kolb2019,
   author = {Kolb, J P;Draxinger, W;Klee, J;Pfeiffer, T;Eibl, M;Klein, T;Wieser, W and Huber, R},
   title = {Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates},
   journal = {J pone},
 keywords = {AG-Huber_OCT},
   url = {https://doi.org/10.1371/journal.pone.0213144},
   pages = {e0213144},
   ISSN = {1932-6203},
   
   year = {2019},
   type = {Journal Article}
}
Jan Philip Kolb, Daniel Weng, Hubertus Hakert, Matthias Eibl, Wolfgang Draxinger, Tobias Meyer-Zedler, Thomas Gottschall, Ralf Brinkmann, Reginald Birngruber, Jürgen Popp, Jens Limpert, Sebastian Karpf, and Robert Huber,
Virtual HE histology by fiber-based picosecond two-photon microscopy, in Multiphoton Microscopy in the Biomedical Sciences XIX , Ammasi Periasamy; Peter T. C. So; Karsten König, Eds. International Society for Optics and Photonics, 022019. pp. 108822F.
DOI:10.1117/12.2507866
Bibtex: BibTeX
@inproceedings{10.1117/12.2507866,
author = {Jan Philip Kolb and Daniel Weng and Hubertus Hakert and Matthias Eibl and Wolfgang Draxinger and Tobias Meyer and Thomas Gottschall and Ralf  Brinkmann and Reginald Birngruber and J{\"u}rgen Popp and Jens Limpert and Sebastian Nino Karpf and Robert Huber},
title = {{Virtual HE histology by fiber-based picosecond two-photon microscopy}},
volume = {10882},
booktitle = {Multiphoton Microscopy in the Biomedical Sciences XIX},
editor = {Ammasi Periasamy and Peter T. C. So and Karsten K{\"o}nig},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {108822F},
abstract = {Two-Photon Microscopy (TPM) can provide three-dimensional morphological and functional contrast in vivo. Through proper staining, TPM can be utilized to create virtual, HE equivalent images and thus can improve throughput in histology-based applications. We previously reported on a new light source for TPM that employs a compact and robust fiber-amplified, directly modulated laser. This laser is pulse-to-pulse wavelength switchable between 1064 nm, 1122 nm, and 1186 nm with an adjustable pulse duration from 50ps to 5ns and arbitrary repetition rates up to 1MHz at kW-peak powers. Despite the longer pulse duration, it can achieve similar average signal levels compared to fs-setups by lowering the repetition rate to achieve similar cw and peak power levels. The longer pulses lead to a larger number of photons per pulse, which yields single shot fluorescence lifetime measurements (FLIM) by applying a fast 4 GSamples/s digitizer. In the previous setup, the wavelengths were limited to 1064 nm and longer. Here, we use four wave mixing in a non-linear photonic crystal fiber to expand the wavelength range down to 940 nm. This wavelength is highly suitable for imaging green fluorescent proteins in neurosciences and stains such as acridine orange (AO), eosin yellow (EY) and sulforhodamine 101 (SR101) used for histology applications. In a more compact setup, we also show virtual HE histological imaging using a direct 1030 nm fiber MOPA.},
keywords = {Multiphoton Microscopy, Four Wave Mixing, FWM, Histology, Laser, Non Linear Microscopy, Two Photon Microscopy, JenLab Young Investigator Award},
year = {2019},
doi = {10.1117/12.2507866},
URL = {https://doi.org/10.1117/12.2507866}
}
D Casper,
Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography, J Biomed Opt , pp. 046005 - 1 - 11, 2019.
Datei: 1.JBO.24.4.046005
Bibtex: BibTeX
@article{
citation_key = { Casper19},
author = { Casper, M;  Schulz-Hildebrandt, H; Evers, M; Birngruber,R; Manstein, D and Hüttmann, G},
title = {Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography},

journal = {J Biomed Opt},

pages = {046005 - 1 - 11},
year = {2019},

URL = {https://doi.org/10.1117/1.JBO.24.4.046005},
eprint = {}
}
B Burri, and C Meier,
Optical coherence tomography controlled selective retina therapy with a novel microsecond laser., .... SPIE, 2019.
Datei: 12.2526720
Bibtex: BibTeX
@book{Burri2019,
   author = {Burri, C;Hutfilz, A;Grimm, L;Arnold, P;Ebneter, A;Brinkmann, R;Theisen-Kunde, D;Považay, B and Meier, C},
   title = {Optical coherence tomography controlled selective retina therapy with a novel microsecond laser},
   publisher = {SPIE},
   volume = {11079},
keywords = {Selective retina therapy, Retinal pigment epithelium, (170.0170) Medical optics and biotechnology, (170.4500) Optical coherence tomography, (170.4460) Ophthalmic optics and devices, instrumentation, (170.4470) Ophthalmology},
   series = {European Conferences on Biomedical Optics},
   url = {https://doi.org/10.1117/12.2526720},
   year = {2019},
   type = {Book}
}
Z Liang, and A Vogel,
Multi-rate-equation modeling of the energy spectrum of laser-induced conduction band electrons in water, Opt Expr , pp. 4672-4693, 2019.
DOI:10.1364/OE.27.004672
Bibtex: BibTeX
@article{Liang2019,
   author = {Liang, X-X; Zhang, Z and Vogel, A},
   title = {Multi-rate-equation modeling of the energy spectrum of laser-induced conduction band electrons in water},
   journal = {Opt Expr},
   
   
   pages = {4672-4693},
   DOI = {10.1364/OE.27.004672},
   
   year = {2019},
   type = {Journal Article}
}
P-C South, and S A Boppart,
Local wavefront mapping in tissue using computational adaptive optics OCT, Opt Lett 44(5) , no. 5, pp. 1186--1189, 2019. OSA.
DOI:10.1364/OL.44.001186
Bibtex: BibTeX
@article{South:19,
author = { South,F A; Liu, Y-Z; Huang, P-C and Kohlfärber, T and Boppart, S A},
journal = { Opt Lett 44(5)},
pages = {1186--1189},
keywords = {Adaptive optics; Image metrics; Image quality; Refractive index; Speckle noise; Wavefront aberrations},
number = {5},
 
publisher = {OSA},
title = {Local wavefront mapping in tissue using computational adaptive optics OCT},


year = {2019},
doi = {10.1364/OL.44.001186},
abstract = {The identification and correction of wavefront aberrations is often necessary to achieve high-resolution optical images of biological tissues, as imperfections in the optical system and the tissue itself distort the imaging beam. Measuring the localized wavefront aberration provides information on where the beam is distorted and how severely. We have recently developed a method to estimate the single-pass wavefront aberrations from complex optical coherence tomography (OCT) data. Using this method, localized wavefront measurement and correction using computational OCT was performed in ex vivo tissues. The computationally measured wavefront varied throughout the imaged OCT volumes and, therefore, a local wavefront correction outperformed a global wavefront correction. The local wavefront measurement was also used to generate tissue aberration maps. Such aberration maps could potentially be used as a new form of tissue contrast.},
}
Robert Schmidt, and Christian Jirauschek,
Modeling of the Ultra-Stable Operating Regime in Fourier Domain Mode Locked (FDML) Lasers, pp. 1-1, 2019.
DOI:10.1109/CLEOE-EQEC.2019.8873213
Bibtex: BibTeX
@article{Schmidt2019,
   author = {Schmidt, Mark;Pfeiffer, Tom;Grill, Christin;Huber, Robert and Jirauschek, Christian},
   title = {Modeling of the Ultra-Stable Operating Regime in Fourier Domain Mode Locked (FDML) Lasers},
   pages = {1-1},
   DOI = {10.1109/CLEOE-EQEC.2019.8873213},
   year = {2019},
   type = {Book},
booktitle = { 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference}
}

Dominic Kastner, Torben Blömker, Tom Pfeiffer, Christin Grill, Mark Schmidt, Christian Jirauschek, and Robert Huber,
Measurement of Inter-Sweep Phase Stability of an FDML Laser with a 10 kHz Tunable Ring Laser, in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference , Optical Society of America, 2019. pp. 1-1.
DOI:10.1109/CLEOE-EQEC.2019.8872860
Bibtex: BibTeX
@inproceedings{Kastner:19,
author = {Kastner, D; Bl\"{o}mker, T; Pfeiffer, T; Grill, C; Schmidt, M; Jirauschek, C and Huber, R},
booktitle = {2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference},
journal = {2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference},
keywords = {Fourier domain mode locking; Image quality; Optical coherence tomography; Phase noise; Ring lasers; Tunable lasers},
pages = {cj_7_5},
publisher = {Optical Society of America},
title = {Measurement of Inter-Sweep Phase Stability of an FDML Laser with a 10 kHz Tunable Ring Laser},
year = {2019},
keywords = {AG-Huber_FDML, AG-Huber_OCT},
doi = { 10.1109/CLEOE-EQEC.2019.8872860},
abstract = {Fourier Domain Mode Locking (FDML) lasers are light sources that generate a sequence of narrowband optical frequency sweeps at the fundamental or harmonic of the cavity repetition rate \[1\]. This frequency swept output can also be considered as a sequence of strongly chirped, long pulses. FDML lasers are mainly used in swept source optical coherence tomography (SS-OCT), a medical imaging technique. The coherence length of the source, i.e. the intra-sweep phase stability of an FDML sweep, is decisive for the image quality and performance of OCT imaging \[2\].},
}
Kenneth S. Barcikowski, and Alfred Vogel,
Materials synthesis in a bubble, MRS Bulletin , vol. 44 (5), pp. 382--391, 2019.
DOI:10.1557/mrs.2019.107
Bibtex: BibTeX
@article{Vogel2019-2,
    title        = {Materials synthesis in a bubble},
    author       = {Barcikowski, Stephan;Plech, Anton;Suslick, Kenneth S. and Vogel, Alfred},
    year         = 2019,
    journal      = {MRS Bulletin},
    volume       = {44 (5)},
    pages        = {382--391},
    doi          = {10.1557/mrs.2019.107},
    issn         = {0883-7694},
    type         = {Journal Article}
}
Alexa Klettner, and Yoko Miura,
Porcine RPE/choroidal explant cultures., .... 2019.
ISBN:978-1-4939-8669-2
Datei: 978-1-4939-8669-9_8
Bibtex: BibTeX
@book{Miura2019,
   author = {Klettner, A and  Miura, Y},
   title = {Porcine RPE/choroidal explant cultures},
   pages = {109-118 },
journal = {Weber B., Langmann T., Retinal Degeneration. Methods in Molecular Biology: 1834},
   ISBN = {978-1-4939-8669-2},
  URL = {https://doi.org/10.1007/978-1-4939-8669-9_8},
   year = {2019},
   type = {Book}
}
Gereon Spahr, and Dierck Hillmann,
Phase-sensitive interferometry of decorrelated speckle patterns, Scientific Reports , vol. 9(1), pp. 11748, 2019.
Datei: s41598-019-47979-8
Bibtex: BibTeX
@article{Spahr-2019,
   title        = {Phase-sensitive interferometry of decorrelated speckle patterns},
   author       = {Spahr, Hendrik;Pfäffle, Clara;Burhan, Sazan;Kutzner, Lisa;Hilge, Felix;Hüttmann, Gereon and Hillmann, Dierck},
   year         = 2019,
   journal      = {Scientific Reports},
   volume       = {9(1)},
   pages        = 11748,
   issn         = {2045-2322},
   url          = {https://doi.org/10.1038/s41598-019-47979-8},
   type         = {Journal Article}
}
Tabea Kohlfaerber, Ramtin Rahmanzadeh, Jürgen Groll, Hinnerk Schulz-Hildebrandt, and Gereon Hüttmann,
Investigation of cell dynamics in 3D cell spheroids and cell interaction with 3D printed scaffolds by mOCT, Transactions on Additive Manufacturing Meets Medicine 1(1) , 2019.
DOI:10.18416/AMMM.2019.1909S03P19
Bibtex: BibTeX
@article{Kohlfärber2019,
   author = {Kohlfaerber, T;Ding, S;Rahmanzadeh, R;Jüngst, T;Groll, J;Schulz-Hildebrandt, H and Hüttmann, G},
   title = {Investigation of cell dynamics in 3D cell spheroids and cell interaction with 3D printed scaffolds by mOCT},
   journal = {Transactions on Additive Manufacturing Meets Medicine 1(1)},
   
   DOI = {10.18416/AMMM.2019.1909S03P19},
   year = {2019},
   type = {Journal Article}
}
Yoko Miura, Eric Seifert, Josua Rehra, Katharina Kern, Dirk Theisen-Kunde, Michael Denton, and Ralf Brinkmann,
Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study, Int J Hyperth , pp. 1-7, 2019.
Datei: 02656736.2019.1590653
Bibtex: BibTeX
@article{Miura2019/4,
   author = {Miura, Y;Seifert, E;Rehra, J;Kern, K;Theisen-Kunde, D;Denton, M and Brinkmann, R},
   title = {Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study},
   journal = {Int J Hyperth},
   pages = {1-7},
   ISSN = {0265-6736},
  
   url = {https://doi.org/10.1080/02656736.2019.1590653},
   year = {2019},
   type = {Journal Article}
}
Matthias Strauch, Jan Philip Kolb, Daniel Weng, Melanie Wacker, Wolfgang Draxinger, Sebastian Karpf, and Robert Huber,
Sectioning-Free Virtual H&E Imaging of Tissue Samples with Two-Photon Microscopy, in 31st Congress of the ESP , 2019.
DOI:10.1007/s00428-019-02631-8
Bibtex: BibTeX
@InProceedings{Strauch2019,
  author    = {Strauch, Matthias and Kolb, Jan Philip and Weng, Daniel and Wacker, Melanie and Draxinger, Wolfgang and Karpf, Sebastian and Huber, Robert},
  booktitle = {31st Congress of the ESP},
  title     = {Sectioning-Free Virtual H&E Imaging of Tissue Samples with Two-Photon Microscopy},
  year      = {2019},
  keywords  = {AG-Huber_NL},
}
M P. Kepp,
Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks, Biomed Opt Expr 10(7) , pp. 3484-3496, 2019.
DOI:10.1364/BOE.10.003484
Datei: BOE.10.003484
Bibtex: BibTeX
@article{Hüttmann2019,
   author = {Kepp, T;Droigk, C;Casper, M;Evers, M;Hüttmann, G;Salma, N;Manstein, D;Heinrich, M P. and Handels, H},
   title = {Segmentation of mouse skin layers in optical coherence tomography image data using deep convolutional neural networks},
   journal = {Biomed Opt Expr 10(7)},
  
   pages = {3484-3496},
   DOI = {10.1364/BOE.10.003484},
   url = {https://doi.org/10.1364/BOE.10.003484},
   year = {2019},
   type = {Journal Article}
}
Boris Považay, Ralf Brinkmann, Markus Stoller, and Ralf Kessler,
Selective Retina Therapy, in High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics , Bille, Josef F., Eds. Cham: Springer International Publishing, 2019, pp. 237-259.
DOI:https://doi.org/10.1007/978-3-030-16638-0_11
ISBN:978-3-030-16638-0
Datei: 978-3-030-16638-0_11
Bibtex: BibTeX
@inbook{Brinkmann2019,
   author = {Považay, Boris;Brinkmann, Ralf;Stoller, Markus and Kessler, Ralf},
   title = {Selective Retina Therapy},
   booktitle = {High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics},
   editor = {Bille, Josef F.},
   publisher = {Springer International Publishing},
   address = {Cham},
   pages = {237-259},
   ISBN = {978-3-030-16638-0},
  
   url = {https://doi.org/10.1007/978-3-030-16638-0_11},
   year = {2019},
   type = {Book Section}
}
G Pfäffle, and D. Hillmann,
Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina, Optics Letters 44(23) , pp. 5671-5674, 2019.
DOI:10.1364/OL.44.005671
Bibtex: BibTeX
@article{Pfäffle2019,
   author = {Pfäffle, C;Spahr, H;Kutzner, L;Burhan, S;Hilge, F;Miura, Y;Hüttmann, G and Hillmann, D},
   title = {Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina},
   journal = {Optics Letters 44(23)},
 
   pages = {5671-5674},
   DOI = {10.1364/OL.44.005671},
   
   year = {2019},
   type = {Journal Article}
}
Robert Wang, and Gijs van Soest,
Simultaneous morphological and flow imaging enabled by megahertz intravascular Doppler optical coherence tomography, IEEE Transactions on Medical Imaging , vol. 39, no. 5, pp. 1535-1544, 2019.
Bibtex: BibTeX
@article{Wang2019-2,
   author = {Wang, Tianshi;Pfeiffer, Tom;Daemen, Joost;Mastik, Frits;Wieser, Wolfgang;van der Steen, AFW;Huber, Robert and van Soest, Gijs},
   title = {Simultaneous morphological and flow imaging enabled by megahertz intravascular Doppler optical coherence tomography},
   journal = {IEEE Transactions on Medical Imaging},
   volume = {39},
   number = {5},
   pages = {1535-1544},
   ISSN = {0278-0062},
   year = {2019},
   type = {Journal Article}
}
R Tode, and J Roider,
Thermische Stimulation der Retina: von der translationalen Forschung zur experimentellen technischen Umsetzung, Spitzenforschung in der Ophthalmologie , vol. 117.DOG Kongress, pp. 172-175, 2019.
Datei:
Bibtex: BibTeX
@article{Tode2019,
   author = {Tode, J;von der Burchard, C;Richert, E;Klettner, A;Brinkman, R and Roider, J},
   title = {Thermische Stimulation der Retina: von der translationalen Forschung zur experimentellen technischen Umsetzung},
   journal = {Spitzenforschung in der Ophthalmologie},
   volume = {117.DOG Kongress},
   pages = {172-175},
   ISSN = {1861-4620},
   url = {https://www.dog.org/?cat=276},
   year = {2019},
   type = {Journal Article}
}
S Jiang, and B Jalali,
Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera, Nature Photonics , 2019.
Datei: 337692338_Time-stretch_LiDAR_as_a_spectrally_scanned_time-of-flight_ranging_camera
Bibtex: BibTeX
@article{Karpf2019,
   author = {Jiang, Y;Karpf, S and Jalali, B},
   title = {Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera},
   journal = {Nature Photonics},
   keywords={},
   ISSN = {1749-4893},
   URL = {https://www.researchgate.net/publication/337692338_Time-stretch_LiDAR_as_a_spectrally_scanned_time-of-flight_ranging_camera},
   year = {2019},
   type = {Journal Article}
}
 

C. Abbas,
Toward feedback temperature control for retinal laser treatment., .... SPIE, 2019.
Datei: 12.2527169
Bibtex: BibTeX
@book{Abbas-2019,
   author = {Abbas, H. S.;Kren, C.;Danicke, V.;Herzog, C. and Brinkmann, R.},
   title = {Toward feedback temperature control for retinal laser treatment},
   publisher = {SPIE},
   volume = {11079},
keywords = {Retina, Laser, Temperature, Optoacoustics, Photocoagulation, System identification, Automatic control},
   series = {European Conferences on Biomedical Optics},
   url = {https://doi.org/10.1117/12.2527169},
   year = {2019},
   type = {Book}
}
E Bliedtner,
Towards Automatically Controlled Dosing for Selective Laser Trabeculoplasty, TVST 8(6) , 2019.
DOI:10.1167/tvst.8.6.24
Bibtex: BibTeX
@article{Bliedtner2019,
   author = {Bliedtner, K;Seifert, E and Brinkmann, R},
   title = {Towards Automatically Controlled Dosing for Selective Laser Trabeculoplasty},
   journal = {TVST 8(6)},
  
   ISSN = {2164-2591},
   DOI = {10.1167/tvst.8.6.24},
   year = {2019},
   type = {Journal Article}
}
Ramtin Rahmanzadeh, Florian Rudnitzki, and Gereon Hüttmann,
Two ways to inactivate the Ki-67 protein—Fragmentation by nanoparticles, crosslinking with fluorescent dyes, Journal of Biophotonics , pp. e201800460, 2019.
DOI:10.1002/jbio.201800460
Datei: jbio.201800460
Bibtex: BibTeX
@article{Rahmanzadeh-2019,
   author = {Rahmanzadeh, R;Rudnitzki, F and Hüttmann, G},
   title = {Two ways to inactivate the Ki-67 protein—Fragmentation by nanoparticles, crosslinking with fluorescent dyes},
   journal = {Journal of Biophotonics},
   Year = {2019},
   pages = {e201800460},
   ISSN = {1864-063X},
   DOI = {10.1002/jbio.201800460},
   url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201800460},
   type = {Journal Article}
}
Frank Strittmatter, Maximilian Eisel, Ralf Brinkmann, Birgit Lange, Jens Cordes, and Ronald Sroka,
Laser-induced lithotripsy: a review, insight into laboratory work, and lessons learned, Translational Biophotonics , vol. n/a, no. n/a, pp. e201900029, 2019.
DOI:10.1002/tbio.201900029
Datei: tbio.201900029
Bibtex: BibTeX
@article{Brinkmann2020,
   author = {Strittmatter, F;Eisel, M; Brinkmann, R; Cordes, J;Lange, B and Sroka, R},
   title = {Laser-induced lithotripsy: a review, insight into laboratory work, and lessons learned},
   journal = {Translational Biophotonics},
   volume = {n/a},
   number = {n/a},
   pages = {e201900029},
   ISSN = {2627-1850},
   DOI = {10.1002/tbio.201900029},
   url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/tbio.201900029},
   year = {2019},
   type = {Journal Article}
}
Hinnerk Schulz-Hildebrandt, Naja Meyer-Schell, Malte Casper, Michael Evers, and Dieter Manstein,
Monitoring temperature induced phase changes in subcutaneous fatty tissue using an astigmatism corrected dynamic needle probe, in Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II , 2019. pp. 1--3.
DOI:10.1117/12.2527087
ISBN:9781510628397
Bibtex: BibTeX
@inproceedings{Schulz-Hildebrandt2019,
author = {Schulz-Hildebrandt, Hinnerk and Meyer-Schell, Naja and Casper, Malte and Evers, Michael and Birngruber, Reginald and Manstein, Dieter and H{\"{u}}ttmann, Gereon},
booktitle = {Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II},
doi = {10.1117/12.2527087},
isbn = {9781510628397},
number = {110730L},
pages = {1--3},
title = {{Monitoring temperature induced phase changes in subcutaneous fatty tissue using an astigmatism corrected dynamic needle probe}},
keywords = {OCT, Endoskope},
year = { 2019}
}
Gesa Hillmann,
In Vivo FF-SS-OCT Optical Imaging of Physiological Responses to Photostimulation of Human Photoreceptor Cells, in High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics , Bille, Josef F., Eds. Cham: Springer International Publishing, 2019, pp. 181-194.
ISBN:978-3-030-16638-0
Datei: 978-3-030-16638-0_8
Bibtex: BibTeX
@inbook{Hillmann2019,
   author = {Hillmann, Dierck;Pfäffle, Clara;Spahr, Hendrik;Sudkamp, Helge;Franke, Gesa and Hüttmann, Gereon},
   title = {In Vivo FF-SS-OCT Optical Imaging of Physiological Responses to Photostimulation of Human Photoreceptor Cells},
   booktitle = {High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics},
   editor = {Bille, Josef F.},
   publisher = {Springer International Publishing},
   address = {Cham},
   pages = {181-194},
   ISBN = {978-3-030-16638-0},
   
   url = {https://doi.org/10.1007/978-3-030-16638-0_8},
   year = {2019},
   type = {Book Section}
}
R Freidank, and N. Linz,
Correction of hyperopia by intrastromal cutting and liquid filler injection, J Biomed Opt , no. 5%J Journal of Biomedical Optics, pp. 1-7, 7, 2019.
Datei: 1.JBO.24.5.058001
Bibtex: BibTeX
@article{Freidank2019,
   author = {Freidank, S;Vogel, A;Anderson, R. R.;Birngruber, R and Linz, N},
   title = {Correction of hyperopia by intrastromal cutting and liquid filler injection},
   journal = {J Biomed Opt},
  
   number = {5%J Journal of Biomedical Optics},
   pages = {1-7, 7},
   
   url = {https://doi.org/10.1117/1.JBO.24.5.058001},
   year = {2019},
   type = {Journal Article}
}
G Hillmann,
In Vivo FF-SS-OCT Optical Imaging 8 of Physiological Responses to Photostimulation of Human Photoreceptor Cells, in High Resolution Imaging in Microscopy and Ophthalmology , Bille, Josef F., Eds. Cham, Switzerland: Springer Nature, 2019.
DOI:10.1007/978-3-030-16638-0
ISBN:978-3-030-16638-0 (online) 978-3-030-16637-3 (print)
Datei: 10.1007%2F978-3-030-16638-0_8.pdf
Bibtex: BibTeX
@inbook{Hillmann2019,
   author = {Hillmann, D;Pfäffle, C;Spahr, H;Sudkamp, H;Franke, G and Hüttmann, G},
   title = {In Vivo FF-SS-OCT Optical Imaging 8 of Physiological Responses to Photostimulation of Human Photoreceptor Cells},
   booktitle = {High Resolution Imaging in Microscopy and Ophthalmology},
   editor = {Bille, Josef F.},
   publisher = {Springer Nature},
   address = {Cham, Switzerland},

   ISBN = {978-3-030-16638-0 (online)
978-3-030-16637-3 (print)},
   DOI = {10.1007/978-3-030-16638-0},
   url = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-16638-0_8.pdf},
   year = {2019},
   type = {Book Section}
}
P Münter, and G H\"{u}ttmann,
4D microscopic optical coherence tomography imaging of ex vivo mucus transport, in Proc. SPIE 11078, Optical Coherence Imaging Techniques and Imaging in Scattering Media III , 2019. pp. 1--5.
ISBN:9781510628496
Datei: 12.2527138.full
Bibtex: BibTeX
@inproceedings{Muenter2019,
title = {4D microscopic optical coherence tomography imaging of ex vivo mucus transport},
author = { M\"{u}nter, M; Schulz-Hildebrandt, H; Pieper, M; K\"{o}nig, P and  H\"{u}ttmann, G},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11078/2527138/4D-microscopic-optical-coherence-tomography-imaging-of-ex-vivo-mucus/10.1117/12.2527138.full},

isbn = {9781510628496},
year = {2019},
date = {2019-01-01},
booktitle = {Proc. SPIE 11078, Optical Coherence Imaging Techniques and Imaging in Scattering Media III},
volume = {11078},
number = {11},
pages = {1--5},
keywords = {OCM},
pubstate = {published},
tppubtype = {inproceedings}
}
H Ahrens, and G H\"{u}ttmann,
An endomicroscopic OCT for clinical trials in the field of ENT (Invited), in Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II , 2019. pp. 1--4.
ISBN:9781510628397
Datei: 12.2527099.full
Bibtex: BibTeX
@inproceedings{Ahrens2019,
title = {An endomicroscopic OCT for clinical trials in the field of ENT (Invited)},
author = { Ahrens, M; Idel, C; Chaker, A; Wollenberg, B; K\"{o}nig, P; Schulz-Hildebrandt, H and H\"{u}ttmann, G},
url = {https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11073/2527099/An-endomicroscopic-OCT-for-clinical-trials-in-the-field-of/10.1117/12.2527099.full},

isbn = {9781510628397},
year = {2019},
date = {2019-01-01},
booktitle = {Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II},
number = {110730U},
pages = {1--4},
keywords = {Endoskope, meos, OCM},
pubstate = {published},
tppubtype = {inproceedings}
}
Martin Rudolf, Christine A Curcio, Ursula Schlötzer-Schrehardt, Armin Mir Mohi Sefat, Aysegül Tura, Max Philipp Brinkmann, Salvatore Grisanti, Yoko Miura, and Mahdy Ranjbar,
Apolipoprotein A-I mimetic peptide L-4F removes Bruch's membrane lipids in aged nonhuman primates, Invest Ophthalmol Vis Sci , pp. 461-472, 2019.
DOI:10.1167/iovs.18-25786
Datei: 30707219
Bibtex: BibTeX
@article{Miura2019-2,
   author = {Rudolf, M; Curcio, C A; Schlözer-Schrehardt, U; Sefat, A M M; Tura, A; Aherrahrou, Z; Brinkmann, M; Grisanti, S;  Miura, Y and Ranjbar, M},
   title = {Apolipoprotein A-I mimetic peptide L-4F removes Bruch's membrane lipids in aged nonhuman primates},
   journal = {Invest Ophthalmol Vis Sci},
   pages = {461-472},  
   url = {https://www.ncbi.nlm.nih.gov/pubmed/30707219},
   year = {2019},
   type = {Journal Article}
}
D. Hillmann,
Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion, Optics letters , vol. 44(5), pp. 1315-1318, 2019.
DOI:https://doi.org/10.1364/OL.44001315
Datei: OL.44001315
Bibtex: BibTeX
@article{Spahr2019,
   author = {Spahr, H;Pfäffle, C;Huettmann, G and Hillmann, D},
   title = {Artifacts in speckle tracking and multi-aperture
Doppler OCT imaging of lateral motion},
   journal = {Optics letters},
   volume = {44(5)},
   pages = {1315-1318},
   DOI = {https://doi.org/10.1364/OL.44001315},
   url = {https://doi.org/10.1364/OL.44001315},
   year = {(2019)},
   type = {Journal Article}
}
C. Pfäffle, and D. Hillmann,
Artifacts in speckle tracking and multi-aperture Doppler OCT imaging of lateral motion, Opt Lett , pp. 1315-1318, 2019.
Datei: OL.44.001315
Bibtex: BibTeX
@article{Spahr2019,
   author = {Spahr, H; Pfäffle, C; Huettmann, G and Hillmann, D},
   title = { Artifacts in speckle tracking and multi-aperture
Doppler OCT imaging of lateral motion},
   journal = { Opt Lett},
   pages = {1315-1318},
URL = {https://doi.org/10.1364/OL.44.001315},
   year = {2019},
   type = {Journal Article}
}
M. J. Casper, J. Glahn, M. Evers, G. Kositratna, G. H\"{u}ttmann, and D. Manstein,
Capillary Refill - The Key to Assessing Dermal Capillary Capacity and Pathology in Optical Coherence Tomography Angiography, Lasers in Surgery and Medicine , 2019.
DOI:10.1002/lsm.23188
Bibtex: BibTeX
@article{Casper2019b,
title = {Capillary Refill - The Key to Assessing Dermal Capillary Capacity and Pathology in Optical Coherence Tomography Angiography},
author = {Casper, M. J. and Glahn, J. and Evers, M. and Schulz-Hildebrandt, H. and Kositratna, G. and Birngruber, R. and H\"{u}ttmann, G. and Manstein, D.},
doi = {10.1002/lsm.23188},
year = {2019},
date = {2019-11-22},
journal = {Lasers in Surgery and Medicine},
abstract = {Background/Objectives Standard optical coherence tomography angiography (OCTA) has been limited to imaging blood vessels actively undergoing perfusion, providing a temporary picture of surface microvasculature. Capillary perfusion in the skin is dynamic and changes in response to the surrounding tissue's respiratory, nutritional, and thermoregulatory needs. Hence, OCTA often represents a given perfusion state without depicting the actual extent of the vascular network. Here we present a method for obtaining a more accurate anatomic representation of the surface capillary network in human skin using OCTA, along with proposing a new parameter, the Relative Capillary Capacity (RCC), a quantifiable proxy for assessing capillary dilation potential and permeability. Methods OCTA images were captured at baseline and after compression of the skin. Baseline images display ambient capillary perfusion, while images taken upon capillary refill display the network of existing capillaries at full capacity. An optimization-based automated vessel segmentation method was used to automatically analyze and compare OCTA image sequences obtained from two volunteers. RCC was then compared with visual impressions of capillary viability. Results Our OCTA imaging sequence provides a method for mapping cutaneous capillary networks independent of ambient perfusion. Differences between baseline and refill images clearly demonstrate the shortcomings of standard OCTA imaging and produce the RCC biometric as a quantifiable proxy for assessing capillary dilation potential and permeability. Conclusion Future dermatological OCTA diagnostic studies should implement the Capillary Refill Methods over standard imaging techniques and further explore the relevance of RCC to differential diagnosis and dermatopathology. 
\textbf{Lasers Surg. Med. © The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.}},
keywords = {mOCT},
pubstate = {published},
tppubtype = {article}
}
Yoko Miura, Britta Lewke, Alessa Hutfilz, and Ralf Brinkmann,
Change in fluorescence lifetime of retinal pigment epithelium under oxidative stress, Nippon Ganka Gakkai Zasshi , pp. 105-114, 2019.
Datei: Disp
Bibtex: BibTeX
@article{Miura2019/3,
   
   author = {Miura, Y;Lewke, B;Hutfilz, A and Brinkmann, R},
   title = {Change in fluorescence lifetime of retinal pigment epithelium under oxidative stress},
   journal = {Nippon Ganka Gakkai Zasshi },
  
   pages = {105-114},
   url = {http://journal.nichigan.or.jp/Disp?style=abst&vol=123&year=2019&mag=0&number=2&start=105},
   year = {2019},
   type = {Journal Article}
}

Kumiko Hirayama, Manabu Yamamoto, Takeya Kohno, Dirk Theisen-Kunde, Ralf Brinkmann, Yoko Miura, and Shigero Honda,
Change in the Thickness of Retinal Layers after Selective Retina Therapy (SRT) in Patients with Central Serous Chorioretinopathy, Osaka City Med. , vol. 65, pp. 55-63, 2019.
Datei: G0000438repository_00306096-65-1-55
Bibtex: BibTeX
@article{Miura2019,
   author = {Hirayama, K;Manabu Yamamoto, M; Takeya Kohno, T; Miura, Y; Brinkmann, R;  Shiraki,K;Theisen-Kunde, D; and Honda, S;},
   title = {Change in the Thickness of Retinal Layers after Selective Retina
Therapy (SRT) in Patients with Central Serous Chorioretinopathy},
   journal = {Osaka City Med.},
   volume = {65},
   pages = {55-63},
   url = {http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_00306096-65-1-55},
   year = {2019},
   type = {Journal Article}
}
C Wang, and Z Zhang,
Chlorin-based photoactivable Galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in Melanoma, ACS Applied Materials & Interfaces , 2019.
DOI:10.1021/acsami.9b09560
Bibtex: BibTeX
@article{Rahmanzadeh2019,
   author = {Wang, S;Liu, H;Xin, J;Rahmanzadeh, R;Wang, J;Yao, C and Zhang, Z},
   title = {Chlorin-based photoactivable Galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in Melanoma},
   journal = {ACS Applied Materials & Interfaces},
   ISSN = {1944-8244},
   DOI = {10.1021/acsami.9b09560},  
   year = {2019},
   type = {Journal Article}
}
Mark Schmidt, Tom Pfeiffer, Christin Grill, Robert Huber, and Christian Jirauschek,
Coexistence of Intensity Pattern Types in Broadband Fourier Domain Mode Locked (FDML) Lasers, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 2019. pp. 1--1.
DOI:10.1109/CLEOE-EQEC.2019.8872381
Bibtex: BibTeX
@inproceedings{schmidt2019coexistence,
  title={Coexistence of Intensity Pattern Types in Broadband Fourier Domain Mode Locked (FDML) Lasers},
  author={Schmidt, M; Pfeiffer, T; Grill, C; Huber, R and Jirauschek, C},
  booktitle={2019 Conference on Lasers and Electro-Optics Europe \& European Quantum Electronics Conference (CLEO/Europe-EQEC)},
  pages={1--1},
  year={2019},
  organization={IEEE},
keywords= { AG-Huber_FDML},
url={  https://ieeexplore.ieee.org/document/8872381}

}
M. Ourak, J. Smits, L. Esteveny, G. Borghesan, A. Gijbels, L. Schoevaerdts, Y. Douven, J. Scholtes, E. Lankenau, G. H{"u}ttmann, M. Kozlovszky, G. Kronreif, K. Willekens, P. Stalmans, K. Faridpooya, M. Cereda, A. Giani, G. Staurenghi, D. Reynaerts, and E. B. Vander Poorten,
Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation, International Journal of Computer Assisted Radiology and Surgery , vol. 14, no. 2, pp. 301--309, 2019.
DOI:10.1007/s11548-018-1829-0
Datei: s11548-018-1829-0
Bibtex: BibTeX
@Article{Ourak2019,
author="Ourak, M.
and Smits, J.
and Esteveny, L.
and Borghesan, G.
and Gijbels, A.
and Schoevaerdts, L.
and Douven, Y.
and Scholtes, J.
and Lankenau, E.
and Eixmann, T.
and Schulz-Hildebrandt, H.
and H{\"u}ttmann, G.
and Kozlovszky, M.
and Kronreif, G.
and Willekens, K.
and Stalmans, P.
and Faridpooya, K.
and Cereda, M.
and Giani, A.
and Staurenghi, G.
and Reynaerts, D.
and Vander Poorten, E. B.",
title="Combined OCT distance and FBG force sensing cannulation needle for retinal vein cannulation: in vivo animal validation",
journal="International Journal of Computer Assisted Radiology and Surgery",
year="2019",
month="Feb",
day="01",
volume="14",
number="2",
pages="301--309",
abstract="Retinal vein cannulation is an experimental procedure during which a clot-dissolving drug is injected into an obstructed retinal vein. However, due to the fragility and minute size of retinal veins, such procedure is considered too risky to perform manually. With the aid of surgical robots, key limiting factors such as: unwanted eye rotations, hand tremor and instrument immobilization can be tackled. However, local instrument anatomy distance and force estimation remain unresolved issues. A reliable, real-time local interaction estimation between instrument tip and the retina could be a solution. This paper reports on the development of a combined force and distance sensing cannulation needle, and its experimental validation during in vivo animal trials.",
issn="1861-6429",
doi="10.1007/s11548-018-1829-0",
url="https://doi.org/10.1007/s11548-018-1829-0",
citation_key = {Ourak2019}
}
F. Hillmann,
Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations, Opt Lett 44 (15) , pp. 3905-3908, 2019.
DOI:10.1364/OL.44.003905
Datei: 31368998
Bibtex: BibTeX
@article{Hillmann2019,
   author = {Hillmann, D.;Pfaffle, C.;Spahr, H.;Burhan, S.;Kutzner, L.;Hilge, F. and Hüttmann, G.},
   title = {Computational adaptive optics for optical coherence tomography using multiple randomized subaperture correlations},
   journal = {Opt Lett 44 (15)},
 
   pages = {3905-3908},
   ISSN = {1539-4794 (Electronic)
0146-9592 (Linking)},
   DOI = {10.1364/OL.44.003905},
   url = {https://www.ncbi.nlm.nih.gov/pubmed/31368998},
   year = {2019},
   type = {Journal Article}
}
T Espinoza, and s Zwart,
Characterization of Micro- and Nanoscale LuPO4:Pr3+,Nd3+ with Strong UV-C Emission to Reduce X-Ray Doses in Radiation Therapy, Particle and Particle Systems Characterization , 2019.
Datei: 335364547_Characterization_of_Micro-_and_Nanoscale_LuPO4Pr3Nd3_with_Strong_UV-C_Emission_to_Reduce_X-Ray_Doses_in_Radiation_Therapy
Bibtex: BibTeX
@article{Rahmanzadeh-2019-2,
   author = {Espinoza, S;Müller, M;Jenneboer, H;Peulen, L;Bradley, T;Purschke, M;Haase, M;Rahmanzadeh, R;Jüstel, T and Zwart, s},
   title = {Characterization of Micro- and Nanoscale LuPO4:Pr3+,Nd3+ with Strong UV-C Emission to Reduce X-Ray Doses in Radiation Therapy},
   journal = {Particle and Particle Systems Characterization},
   URL = {https://www.researchgate.net/publication/335364547_Characterization_of_Micro-_and_Nanoscale_LuPO4Pr3Nd3_with_Strong_UV-C_Emission_to_Reduce_X-Ray_Doses_in_Radiation_Therapy},
   year = {2019},
   type = {Journal Article}
}
E Bliedtner,
Dosimetry for microsecond selective laser trabeculoplasty, in Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX , 2019.
DOI:10.1117/12.2526987
Bibtex: BibTeX
@inproceedings{Bliedtner2019,
   author = {Bliedtner,K; Seifert, E and Brinkmann,R},
   title = {Dosimetry for microsecond selective laser trabeculoplasty},
   volume = {11079},
   DOI = {10.1117/12.2526987},
   year = {2019},
keywords = {Ophthalmology, ophthalmic optics and devices, selective laser trabeculoplasty, micro bubble detection},
booktitle =    {Proc. SPIE 11079, Medical Laser Applications
and Laser-Tissue Interactions IX},
   type = {Conference proceedings}
}
D Detrez,
Heating and optoacoustic temperature determination of cell cultures, in Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX , SPIE, 2019.
Datei: 12.2527024
Bibtex: BibTeX
@inproceedings{Detrez2019,
   author = {Detrez, N;Miura, Y;Seifert, E;Theisen-Kunde, D and Brinkmann, R},
   title = {Heating and optoacoustic temperature determination of cell cultures},
   publisher = {SPIE},
   volume = {11079},
   series = {European Conferences on Biomedical Optics},
booktitle =    {Proc. SPIE 11079, Medical Laser Applications
and Laser-Tissue Interactions IX},
   url = {https://doi.org/10.1117/12.2527024},
keywords = {Laser, Noninvasive thermometry, hyperthermia, temperature measurement, photoacoustics}, optoacoustics,
   year = {2019},
   type = {Conference Proceeding}
}
C Hutfilz,
Ex vivo investigation of different μs laser pulse durations for selective retina therapy., .... SPIE, 2019.
Datei: 12.2526948
Bibtex: BibTeX
@book{Hutfilz-2019,
   author = {Hutfilz, A;Burri, C;Theisen-Kunde, D;Meier, C and Brinkmann, R},
   title = {Ex vivo investigation of different μs laser pulse durations for selective retina therapy},
   publisher = {SPIE},
   volume = {11079},
Keywords = {selective retina therapy, SRT, retinal pigment epithelium, eye model, ED-values, intensity modulation factor, IMF},
   series = {European Conferences on Biomedical Optics},
   url = {https://doi.org/10.1117/12.2526948},
   year = {2019},
   type = {Book}
}
J. Lange,
Exploiting the aiming beam to increase the safety of laser lithotripsy: Experimental evaluation of light reflection and fluorescence, Lasers in Surgery and Medicine , 2019.
DOI:10.1002/lsm.23154
Datei: lsm.23154
Bibtex: BibTeX
@article{Lange2019,
   author = {Lange, B;Cordes, J. and Brinkmann, R},
   title = {Exploiting the aiming beam to increase the safety of laser lithotripsy: Experimental evaluation of light reflection and fluorescence},
   journal = {Lasers in Surgery and Medicine},
   
   ISSN = {0196-8092},
   DOI = {10.1002/lsm.23154},
   
   year = {2019},
   type = {Journal Article}
}
J. Lange,
Exploiting the aiming beam to increase the safety of laser lithotripsy: Experimental evaluation of light reflection and fluorescence, Lasers in Surgery and Medicine , 2019.
Datei: lsm.23154
Bibtex: BibTeX
@article{Lange 2019,
   author = {Lange, B;Cordes, J. and Brinkmann, R},
   title = {Exploiting the aiming beam to increase the safety of laser lithotripsy: Experimental evaluation of light reflection and fluorescence},
   journal = {Lasers in Surgery and Medicine},
   ISSN = {0196-8092},   
   url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/lsm.23154},
   year = {2019},
   type = {Journal Article}
}
G Burchard, and J Roider,
High-Tech-Ophthalmologie zu Hause: Das Home-Care-OCT für AMD Patienten, Spitzenforschung in der Ophthalmologie- , pp. 30-32, 2019.
Datei:
Bibtex: BibTeX
@article{von-der-Burchardt2019,
   author = {von der Burchard, C;Sudkamp, H;Tode, J;Ehlken, C;Moltmann, M;Münst, M;Theisen-Kunde, D;Koch, P;Hüttman, G and Roider, J},
   title = {High-Tech-Ophthalmologie zu Hause: Das Home-Care-OCT für AMD Patienten},
   journal = {Spitzenforschung in der Ophthalmologie- },
   pages = {30-32},
   ISSN = {1861-4620},
   url = {https://www.dog.org/?cat=276},
   year = {2019},
   type = {Journal Article}
}
Gereon Jäckle, and T Pätz,
Fiber optical shape sensing of flexible instruments for endovascular navigation, International Journal of Computer Assisted Radiology and Surgery , 2019.
Datei: s11548-019-02059-0
Bibtex: BibTeX
@article{Jäckle2019,
abstract = {Endovascular aortic repair procedures are currently conducted with 2D fluoroscopy imaging. Tracking systems based on fiber Bragg gratings are an emerging technology for the navigation of minimally invasive instruments which can reduce the X-ray exposure and the used contrast agent. Shape sensing of flexible structures is challenging and includes many calculations steps which are prone to different errors. To reduce this errors, we present an optimized shape sensing model.},
author = {J{\"{a}}ckle, S; Eixmann, T; Schulz-Hildebrandt, H; H{\"{u}}ttmann, Gereon and P{\"{a}}tz, T},

file = {:Users/schulz-hildebrandt/Documents/Mendeley Desktop/J{\"{a}}ckle et al/International Journal of Computer Assisted Radiology and Surgery/J{\"{a}}ckle et al.{\_}2019{\_}Fiber optical shape sensing of flexible instruments for endovascular navigation.pdf:pdf},
issn = {1861-6429},
journal = {International Journal of Computer Assisted Radiology and Surgery},
month = {sep},
year = {2019},
title = {{Fiber optical shape sensing of flexible instruments for endovascular navigation}},
url = {https://doi.org/10.1007/s11548-019-02059-0},
keywords = {Endoskope, meos},

}
First Steps into Catheter Guidance Including Shape Sensing for Endovascular Aneurysm Repair Procedures,
DOI:10.1016/J.EJVS.2019.09.091
Bibtex: BibTeX
@proceedings{Horn2019b,
title = {First Steps into Catheter Guidance Including Shape Sensing for Endovascular Aneurysm Repair Procedures},
author = {Marco Horn and Sonja J\"{a}ckle and Felix von Haxthausen and Tim Eixmann and Hinnerk Schulz-Hildebrandt and Gereon H\"{u}ttmann and Juljan Bouchagiar and Florian Matysiak and Mark Kaschwich and Markus Kleemann and Floris Ernst and Ver\'{o}nica Garc\'{i}a-V\'{a}zquez and Torben P\"{a}tz},
doi = {10.1016/J.EJVS.2019.09.091},
issn = {1078-5884},
year  = {2019},
date = {2019-12-13},
journal = {European Journal of Vascular and Endovascular Surgery},
volume = {58},
number = {6},
pages = {e610--e611},
publisher = {W.B. Saunders},
keywords = {Sensing, Fiber},
pubstate = {published},
tppubtype = {proceedings}
}
R Hutfilz,
Fluorescence Lifetime Imaging Ophthalmoscopy of the Retinal Pigment Epithelium During Wound Healing After Laser Irradiation, Translational Vision Science & Technology , vol. 8(5), 2019.
DOI:10.1167/tvst.8.5.12
Bibtex: BibTeX
@article{Hutfilz2019,
   author = {Hutfilz, A;Sonntag, S;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y},
   title = {Fluorescence Lifetime Imaging Ophthalmoscopy of the Retinal Pigment Epithelium During Wound Healing After Laser Irradiation},
   journal = {Translational Vision Science & Technology},
   volume = {8(5)},
 
   ISSN = {2164-2591},
   DOI = {10.1167/tvst.8.5.12},
   year = {2019},
   type = {Journal Article}
}
Yoko Miura, Paul S Bernstein, Chantal Dysli, Lydia Sauer, and Martin Zinkernagel,
Fluorophores in the Eye, in Fluorescence Lifetime Imaging Ophthalmoscopy , Zinkernagel, Martin and Dysli, Chantal, Eds. Cham: Springer International Publishing, 2019, pp. 35-48.
DOI:https://link.springer.com/chapter/10.1007/978-3-030-22878-1_7
ISBN:978-3-030-22878-1
Datei: 978-3-030-22878-1_7
Bibtex: BibTeX
@inbook{Miura2019,
   author = {Miura, Y;Bernstein, P S;Dysli, C;Sauer, L and Zinkernagel, M},
   title = {Fluorophores in the Eye},
   booktitle = {Fluorescence Lifetime Imaging Ophthalmoscopy},
   editor = {Zinkernagel, Martin and Dysli, Chantal},
   publisher = {Springer International Publishing},
   address = {Cham},
   pages = {35-48},
   ISBN = {978-3-030-22878-1},
Keywords = {Retinoid cycle Lipofuscin Macular pigment Collagen/elastin Redox coenzyme Melanin Lipid peroxidation endproducts Advanced glycation endproducts (AGE) },
  
   url = {https://doi.org/10.1007/978-3-030-22878-1_7},
   year = {2019},
   type = {Book Section}
}
Sebastian Karpf, and B Jalali,
Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture, J Opt Lett , pp. 1952-1955, 2019.
Datei: OL.44.001952
Bibtex: BibTeX
@article{Karpf2019,
   author = {Karpf, S and Jalali, B },
   title = {Fourier-domain mode-locked laser combined with a master-oscillator power amplifier architecture},
   journal = {J Opt Lett},
   URL = {https://doi.org/10.1364/OL.44.001952},
   pages = {1952-1955},
   ISSN = {1539-4794},
   year = {2019},
 keywords = {},
   type = {Journal Article}
}
Sebastian Karpf, and B Jalali,
Frequency-doubled FDML-MOPA laser in the visible, Opt Lett 44(24) , pp. 5913-5916, 2019.
DOI:10.1364/OL.44.005913
Bibtex: BibTeX
@article{karpf2019-2,
   author = {Karpf, S and Jalali, B},
   title = {Frequency-doubled FDML-MOPA laser in the visible},
   journal = {Opt Lett 44(24)},
   keywords = {},
   pages = {5913-5916},
   DOI = {10.1364/OL.44.005913},
   
   year = {2019},
   type = {Journal Article}
}
Rainer Haak, Martin Ahrens, Hartmut Schneider, Michaela Strumpski, Claudia Rueger, Matthias Haefer, Dirk Theisen-Kunde, and Hinnerk Schulz-Hildebrandt,
Handheld OCT probe for intraoral diagnosis on teeth, in Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II , 2019. pp. 1--4.
DOI:10.1117/12.2527185
ISBN:9781510628397
Datei: 12.2527185.full
Bibtex: BibTeX
@inproceedings{Haak2019,
author = {Haak, Rainer and Ahrens, Martin and Schneider, Hartmut and Strumpski, Michaela and Rueger, Claudia and Haefer, Matthias and H{\"{u}}ttmann, Gereon and Theisen-Kunde, Dirk and Schulz-Hildebrandt, Hinnerk},
booktitle = {Proc. SPIE 11073, Clinical and Preclinical Optical Diagnostics II},
doi = {10.1117/12.2527185},
isbn = {9781510628397},
number = {110730W},
pages = {1--4},
title = {{Handheld OCT probe for intraoral diagnosis on teeth}},
keywords = {OCT,Endoskope},
year = {2019},
}
G Fischer, and A Gebert,
High-resolution imaging of the living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures, Cell and Tissue Research , 2019.
Bibtex: BibTeX
@article{Vogel-2019-1,
   author = {Fischer, T;Klinger, A;Smolinski, D von;Orzekowsky-Schroeder, R;Nitzsche, F;Vogel, A;Hüttmann, G and Gebert, A},
   title = {High-resolution imaging of the living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures},
   journal = {Cell and Tissue Research},
   ISSN = {0302-766X (Print) 
1432-0878 (Online)},
   year = {2019},
   type = {Journal Article}
}
R Strenge,
Ex vivo and in vivo imaging of human brain tissue with different OCT systems, in Proc. SPIE 11078, Optical Coherence Imaging Techniques and Imaging in Scattering Media III, 110781C , 2019.
DOI:10.1117/12.2526932
Datei: 12.2526932.short
Bibtex: BibTeX
@inproceedings{Strenge2019,
Title = {Ex vivo and in vivo imaging of human brain tissue with different OCT systems},
author = {Strenge, P.; Lange, B; Grill, C; Draxinger, W; Dannicke, V; Theisen-Kunde, D; Bonsanto, M; Huber, R and Brinkmann, R},
abstract = {Optical coherence tomography (OCT) is a non-invasive imaging technique which is currently investigated for intraoperative detection of residual tumor during resection of human gliomas. Three different OCT systems were used for imaging of human glioblastoma in vivo (830nm spectral domain (SD) OCT integrated into a surgical microscope) and ex vivo (940nm SD-OCT and 1310nm swept-source MHz-OCT using a Fourier domain mode locked (FDML) laser). Before clinical data acquisition, the systems were characterized using a three-dimensional point-spread function phantom. To distinguish tumor from healthy brain tissue later on, attenuation coefficients of each pixel in OCT depth profiles are calculated. First examples from a clinical study show that the pixel-resolved calculation of the attenuation coefficient provides a good image contrast and confirm that white matter shows a higher signal and more homogeneous signal structure than tumorous tissue.},
keywords = {Optical coherence tomography, OCT, FDML laser, MHz-OCT, glioblastoma, intraoperative imaging, brain
imaging},
   DOI= {10.1117/12.2526932},
   year = {2019},
   type = {Conference Paper}
}

2018

Josef Maertz, Jan Philip Kolb, Thomas Klein, Kathrin J. Mohler, Matthias Eibl, Wolfgang Wieser, Robert Huber, Siegfried Priglinger, and Armin Wolf,
Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm, Graefes Arch Clin Exp Ophthalmol , vol. 256, no. 2, pp. 289-298, Dez. 2018.
DOI:10.1007/s00417-017-3857-9
Bibtex: BibTeX
@article{Maertz2018,
   author = {Maertz, J; Kolb, J P; Klein, T; Mohler, K J; Eibl, M; Wieser, W; Huber, R; Priglinger, S and Wolf, A},
   title = {Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   number = {2},
   pages = {289-298},
   DOI = {10.1007/s00417-017-3857-9},
   url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85032262413&doi=10.1007%2fs00417-017-3857-9&partnerID=40&md5=a46c315f12cf5e633ea0f7e644116eb3},
   year = {2018},
   Keywords= {En face imaging, Optical coherence tomography, Swept-source OCT, Megahertz OCT, 3D rendering, Optic disc, Optic disc pit, Optic disc pit maculopathy, AG-Huber_OCT},
   type = {Journal Article}
}
Hinnerk Schulz-Hildebrandt, Tom Pfeiffer, Tim Eixmann, Sabrina Lohmann, Martin Ahrens, Josua Rehra, Wolfgang Draxinger, Peter König, Robert Huber, and Gereon Hüttmann,
High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography, Opt. Lett. , vol. 43, no. 18, pp. 4386-4389, 09 2018. Optica Publishing Group.
DOI:10.1364/OL.43.004386
Bibtex: BibTeX
@article{Schulz-Hildebrandt:18,
author = {Hinnerk Schulz-Hildebrandt and Tom Pfeiffer and Tim Eixmann and Sabrina Lohmann and Martin Ahrens and Joshua Rehra and Wolfgang Draxinger and Peter K\"{o}nig and Robert Huber and Gereon H\"{u}ttmann},
journal = {Opt. Lett.},
keywords = {Fiber optics imaging; Endoscopic imaging; Medical and biological imaging; Optical coherence tomography; Fourier domain mode locking; Image quality; Optical coherence tomography; Single mode fibers; Step index fibers; Three dimensional imaging},
number = {18},
pages = {4386--4389},
publisher = {Optica Publishing Group},
title = {High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography},
volume = {43},
month = {Sep},
year = {2018},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-43-18-4386},
doi = {10.1364/OL.43.004386},
abstract = {We present a forward-viewing fiber scanning endoscope (FSE) for high-speed volumetric optical coherence tomography (OCT). The reduction in size of the probe was achieved by substituting the focusing optics by an all-fiber-based imaging system which consists of a combination of scanning single-mode fibers, a glass spacer, made from a step-index multi-mode fiber, and a gradient-index fiber. A lateral resolution of 11 $\mu$m was achieved at a working distance of 1.2 mm. The newly designed piezo-based FSE has an outer diameter of 1.6 mm and a rigid length of 13.5 mm. By moving the whole imaging optic in spirals for scanning the sample, the beam quality remains constant over the entire field of view with a diameter of 0.8 mm. The scanning frequency was adjusted to 1.22 kHz for use with a 3.28 MHz Fourier domain mode locked OCT system. Densely sampled volumes have been imaged at a rate of 6 volumes per second.},
}
Tom Pfeiffer, Markus Petermann, Wolfgang Draxinger, Christian Jirauschek, and Robert Huber,
Ultra low noise Fourier domain mode locked laser for high quality magahertz optical coherence tomography, Biomed. Opt. Express , vol. 9, no. 9, pp. 4130-4148, 09 2018. Optica Publishing Group.
DOI:10.1364/BOE.9.004130
Bibtex: BibTeX
@article{Pfeiffer:18,
author = {Tom Pfeiffer and Markus Petermann and Wolfgang Draxinger and Christian Jirauschek and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Fiber optics imaging; Lasers, fiber; Optical coherence tomography; Laser stabilization ; Lasers, frequency modulated ; Analog to digital converters; Dark solitons; Image quality; Laser modes; Mode locking; Optical coherence tomography},
number = {9},
pages = {4130--4148},
publisher = {Optica Publishing Group},
title = {Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography},
volume = {9},
month = {Sep},
year = {2018},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-9-9-4130},
doi = {10.1364/BOE.9.004130},
abstract = {We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong signals at large depth, the noise in optical coherence tomography images is significantly reduced. We also describe a simple model that suggests a passive physical stabilizing mechanism that leads to an automatic compensation of remaining cavity dispersion in FDML lasers.},
}
Mark Schmidt, Tom Pfeiffer, Christin Grill, Robert Huber, and Christian Jirauschek,
Self-Stabilization Mechanism in Fourier Domain Mode-Locked (FDML) Lasers, OSA Continuum , vol. 3, no. 6, pp. 1589--1607, 06 2018. Optica Publishing Group.
DOI:10.1364/OSAC.389972
Bibtex: BibTeX
@article{Schmidt:20,
author = {Mark Schmidt and Tom Pfeiffer and Christin Grill and Robert Huber and Christian Jirauschek},
journal = {OSA Continuum},
keywords = {Doppler effect; Laser modes; Laser sources; Nonlinear effects; Stimulated Raman scattering; Vertical cavity surface emitting lasers},
number = {6},
pages = {1589--1607},
publisher = {Optica Publishing Group},
title = {Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers},
volume = {3},
month = {Jun},
year = {2020},
url = {https://opg.optica.org/osac/abstract.cfm?URI=osac-3-6-1589},
doi = {10.1364/OSAC.389972},
abstract = {Understanding the dynamics of Fourier domain mode-locked (FDML) lasers is crucial for determining physical coherence limits, and for finding new superior methods for experimental realization. In addition, the rich interplay of linear and nonlinear effects in a laser ring system is of great theoretical interest. Here we investigate the dynamics of a highly dispersion-compensated setup, where over a bandwidth of more than 100\&\#x2009;nm, a highly coherent output with nearly shot-noise-limited intensity fluctuations was experimentally demonstrated. This output is called the sweet-spot. We show by numerical simulation that a finite amount of residual dispersion in the fiber delay cavity of FDML lasers can be compensated by the group delay dispersion in the swept bandpass filter, such that the intensity trace exhibits no dips or high-frequency distortions, which are the main source of noise in the laser. In the same way, a small detuning from the ideal sweep filter frequency can be tolerated. Furthermore, we find that the filter\&\#x2019;s group delay dispersion improves the coherence properties of the laser, and acts as a self-stabilizing element in the cavity. Our theoretical model is validated against experimental data, showing that all relevant physical effects for the sweet-spot operating regime are included.},
}
R Uzunbajakava, and A Vogel,
Highlighting the nuances behind interaction of picosecond pulses with human skin: Relating distinct laser-tissue interactions to their potential in cutaneous interventions, in Progress in Biomedical Optics and Imaging - Proceedings of SPIE , 2018.
DOI:10.1117/12.2307804
Bibtex: BibTeX
@inproceedings{Vogel2018,
   author = {Uzunbajakava, N E; Varghese, B; Botchkareva, N V; Verhagen, R and Vogel, A},
   title = {Highlighting the nuances behind interaction of picosecond pulses with human skin: Relating distinct laser-tissue interactions to their potential in cutaneous interventions},
   booktitle = {Progress in Biomedical Optics and Imaging - Proceedings of SPIE},
   volume = {10492} ,
   DOI = {10.1117/12.2307804},
   year = {2018},
date = {2018-20-02},
   type = {Conference Proceedings},
year = { 2018}
}

Wavelength agile multi-photon microscopy with a fiber amplified diode laser, Biomedical Optics Express , vol. 9, no. 12, pp. 6273--6282, 2018.
DOI:10.1364/BOE.9.006273
Bibtex: BibTeX
@article{Eibl2018,
author = {Matthias Eibl, Daniel Weng, Hubertus Hakert, Jan Philip Kolb, Tom Pfeiffer, Jennifer E. Hundt, Robert Huber and Sebastian Karpf},
title = {Wavelength agile multi-photon microscopy with a fiber amplified diode laser},
journal = {Biomedical Optics Express},
keywords = {NLI, TPEF, Multiphoton},
volume = {9},
number = {12},
pages = {6273--6282},
doi = {10.1364/BOE.9.006273},
year = {2018}
}
Yoko Miura,
Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo, in Mouse Retinal Phenotyping: Methods and Protocols , Tanimoto, Naoyuki, Eds. Springer New York, 2018, pp. 73-88.
ISBN:978-1-4939-7720-8
Datei: 978-1-4939-7720-8_5
Bibtex: BibTeX
@inbook{Miura2018,
   author = {Miura, Y},
   title = {Two-Photon Microscopy (TPM) and Fluorescence Lifetime Imaging Microscopy (FLIM) of Retinal Pigment Epithelium (RPE) of Mice In Vivo},
   booktitle = {Mouse Retinal Phenotyping: Methods and Protocols},
   editor = {Tanimoto, Naoyuki},
   publisher = {Springer New York},
  
   pages = {73-88},
   ISBN = {978-1-4939-7720-8},
   url={https://doi.org/10.1007/978-1-4939-7720-8_5},
   year = {2018},
   type = {Book Section}
}
Robert Wang, and Gijs van Soest,
Thermo-elastic optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII , International Society for Optics and Photonics, 2018. pp. 108672C.
Bibtex: BibTeX
@inproceedings{Wang2019-1,
   author = {Wang, Tianshi;Pfeiffer, Tom;Wieser, Wolfgang;van Beusekom, Heleen;Draxinger, Wolfgang;van der Steen, Antonius FW;Huber, Robert and van Soest, Gijs},
   title = {Thermo-elastic optical coherence tomography},
   booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII},
   publisher = {International Society for Optics and Photonics},
   volume = {10867},
   pages = {108672C},
   type = {Conference Proceedings}
}
R Tode, and J Roider,
Thermal Stimulation of the Retina Reduces Bruch's Membrane Thickness in Age Related Macular Degeneration Mouse Models, Transl Vis Sci Technol , vol. 7, no. 3, pp. 2, 2018.
DOI:10.1167/tvst.7.3.2
Datei: 29736323
Bibtex: BibTeX
@article{Tode2018,
   author = {Tode, J; Richert, E; Koinzer, S; Klettner, A; von der Burchard, C; Brinkmann, R; Lucius, R and Roider, J},
   title = {Thermal Stimulation of the Retina Reduces Bruch's Membrane Thickness in Age Related Macular Degeneration Mouse Models},
   journal = {Transl Vis Sci Technol},
  
   pages = {2},
   ISSN = {2164-2591 (Print)
2164-2591 (Linking)}, 
   url = {https://www.ncbi.nlm.nih.gov/pubmed/29736323},
   year = {2018},
   type = {Journal Article}
}
Christian Herzog, Benedikt Schmarbeck, Ole Thomsen, Marlin Siebert, and Ralf Brinkmann,
Temperature-controlled laser therapy of the retina via robust adaptive Ɦ∞-control., .... De Gruyter, 2018.
Datei: auto-2018-0066
Bibtex: BibTeX
   @book{Brinkmann2018/2,
   author = {Herzog, C;Thompson, O; Schmarbeck, B; Siebert, M and Brinkmann, R},
   title = {Temperature-controlled laser therapy of the retina via robust adaptive Ɦ∞-control},
   publisher = {De Gruyter},
   
   journal = {at-Automatisierungstechnik},
   pages = {1051-1063},   
   year = {2018},
   type = {Book},
  URL = {https://doi.org/10.1515/auto-2018-0066},
   
  
keywords = {Laser therapy; robust control; parameter estimation; photoacoustics; real-time temperature determination},
   abstract = {Recent studies demonstrate therapeutic benefits in retinal laser therapy even for non-visible effects of the irradiation. However, in practice, ophthalmologists often rely on the visual inspection of irradiation sites to manually set the laser power for subsequent ones. Since absorption properties vary strongly between sites, this procedure can lead to under- or over-treatment. To achieve safe automatic retinal laser therapy, this article proposes a robust control scheme based on photoacoustic feedback of the retinal temperature increase. The control scheme is further extended to adapt to real-time parameter estimates and associated bounds on the uncertainty of each irradiation site. Both approaches are successfully validated in ex vivo experiments on pigs’ eyes, achieving consistent irradiation durations of 55 ms despite the uncertainty in absorption properties.}
}
J Rudnitzki, and G Huettmann,
siRNA release from gold nanoparticles by nanosecond pulsed laser irradiation and analysis of the involved temperature increase, Journal of BIOPHOTONICS , 2018.
DOI:10.1002/jbio.201700329
Bibtex: BibTeX
@article{Rahmanzadeh2018,
   author = {Rudnitzki, F; Feineis, S; Rahmanzadeh, R; Endl, E; Lutz, J; Groll, J and Huettmann, G},
   title = {siRNA release from gold nanoparticles by nanosecond pulsed
laser irradiation and analysis of the involved temperature
increase},
   journal = {Journal of BIOPHOTONICS},
  doi = {10.1002/jbio.201700329},
   

keywords = {cavitation|cell manipulation|controlled release|gold nanoparticle bio-conjugates|laser nanoeffects},
abstract = {Nanosecond pulsed laser irradiation can trigger a release of nucleic acids from gold nanoparticles, but the involved nanoeffects are not fully understood yet. Here we investigate the release of coumarin labeled siRNA from 15 to 30 nm gold particles after nanosecond pulsed laser irradiation. Temperatures in the particle and near the surface were calculated for the different radiant exposures. Upon irradiation with laser pulses of 4 nanosecond duration release started for both particle sizes at a calculated temperature increase of approximately 500 K. Maximum coumarin release was observed for 15 nm particles after irradiation with radiant exposure of 80 mJ cm−2 and with 32 mJ cm−2 for 30 nm particles. This corresponds to a temperature increase of 815 and 900 K, respectively. Our results show that the molecular release by nanosecond pulsed irradiation is based on a different mechanism compared to continuous or femtosecond irradiation. Local temperatures are considerably higher and it is expected that bubble formation plays a crucial role in release and damage to cellular structures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim},
   year = {2018},
   type = {Journal Article}
}
D Borghesan, and E Vander Poorten,
Single Scan OCT-based Retina Detection for Robot-assisted Retinal Vein Cannulation, J Med Robot Res , pp. 184005, 2018.
DOI:10.1142/S2424905X18400056
Datei: S2424905X18400056
Bibtex: BibTeX
@article{borghesan2018single,
title = {Single Scan OCT-based Retina Detection for Robot-assisted Retinal Vein Cannulation},
author = {Borghesan,G; Ourak,M; Lankenau, E; H\"{u}ttmann,G; Schulz-Hildebrandt,H; Willekens,K; Stalmans, K; Reynaerts, D and Vander Poorten,E},
editor = {World Scientific},
url = {https://www.worldscientific.com/doi/abs/10.1142/S2424905X18400056},
doi = {10.1142/S2424905X18400056},
year = {2018},
date = {2018-02-12},
journal = {J Med Robot Res},

pages = {184005},
abstract = {Vitreoretinal surgery concerns a set of particularly demanding minimal invasive micro-surgical interventions at the retina. Micro-surgeons are targeting sub-millimeter-sized structures here. Tiny vessels or wafer-thin membranes are to be cannulated or need to be peeled off. The greatest care is to be displayed not to damage these fragile structures or to inadvertently injure the underlying retina. Damage to the latter is mostly irreparable and might cause permanent loss of vision. Despite the availability over excellent stereo microscopes, wide-angle lenses and powerful light source visualization remains a problem. Especially, the limited depth perception is still perceived as a major bottle-neck whereas efforts have been conducted to integrate sensing capability in today’s state-of-the-art instruments, so far, little effort has been paid to process the obtained sensor data and turns this into a reliable source of information upon which robot assistive guidance schemes could be endowed upon. This paper proposes a number of processing techniques tailored to Optical Coherence Tomography (OCT) measurements. The first results of the proposed algorithms show that it is feasible to extract good and reliable distance estimates from this otherwise rather noisy signal and from a fairly limited dataset. The used data are the so-called A-scans. These are OCT measurements consisting of a single-line image that could be captured by an instrument-mounted fiber through which the OCT signal passes back-and-forth. However, in this work, we perform a pilot study whereby the employed A-scans are extracted from B-scans that are captured by a microscope-mounted OCT scanner, rather than obtained from a probe. The performance of a first embodiment of the algorithm that is based on an Unscented Kalman Filter (UKF) is compared to the performance of a second embodiment that relies on a Particle Filter (PF), focusing on the issues in filter initialization and the tracking quality. Finally, results of UKF and PF executions on a validation dataset are presented. 
Read More: https://www.worldscientific.com/doi/abs/10.1142/S2424905X18400056},
keywords = {Endoskope},
pubstate = {published},
tppubtype = {article}
}
R Sudkamp,
Simple approach for aberration-corrected OCT imaging of the human retina, Opt Lett , pp. 4224, 2018.
DOI:10.1364/ol.43.004224
Bibtex: BibTeX
@article{Sudkamp2018a,
   author = {Sudkamp, H; Hillmann, D; Koch, P;vom Endt, M; Spahr, H; Münst, M; Pfäffle, C; Birngruber, R and Hüttmann, G},
   title = {Simple approach for aberration-corrected OCT imaging of the human retina},
   journal = {Opt Lett},
   
   pages = {4224},
   ISSN = {0146-9592
1539-4794},
   DOI = {10.1364/ol.43.004224},
   year = {2018},
   type = {Journal Article},
   keyword = {Retome}
}
F Strauch, and H. P Urbach,
Creation of aspheric interfaces on an electrowetting liquid lens using surface oscillations, AIP Advances , 2018.
DOI:10.1063/1.5063994
Bibtex: BibTeX
@article{Strauch2018,
   author = {Strauch, M;Somers, P A. A. M.;Bociort, F and Urbach, H. P},
   title = {Creation of aspheric interfaces on an electrowetting liquid lens using surface oscillations},
   journal = {AIP Advances},
   
   ISSN = {2158-3226},
   DOI = {10.1063/1.5063994},
   year = {2018},
   type = {Journal Article}
}
R Seifert,
Selective retina therapy: toward an optically controlled automatic dosing, J Biomed Opt , pp. 1-12, 2018.
DOI:10.1117/1.JBO.23.11.115002
Bibtex: BibTeX
@article{seifert2018,
   author = {Seifert, E; Tode, J; Pielen, A; Theisen-Kunde, D; Framme, C; Roider, J; Miura, Y; Birngruber, R and Brinkmann, R},
   title = {Selective retina therapy: toward an optically controlled automatic dosing},
   journal = {J Biomed Opt},
   
   pages = {1-12},
   ISSN = {1560-2281 (Electronic)
1083-3668 (Linking)},
   DOI = {10.1117/1.JBO.23.11.115002},   
keywords = {algorithm, lasers in medicine, ophthalmology, retinal pigment epithelium, selective retina therapy, selectivity},
   year = {2018},
   type = {Journal Article}
}
Gijs Cecchetti,
Heartbeat optical coherence tomography enables accurate in vivo stents imaging: a quantitative image processing study (Conference Presentation), in Diagnostic and Therapeutic Applications of Light in Cardiology 2019 , International Society for Optics and Photonics, 2018. pp. 1085506.
Bibtex: BibTeX
@inproceedings{Cecchetti2019,
   author = {Cecchetti, Leonardo;Wang, Tianshi;Pfeiffer, Tom;Wieser, Wolfgang;van der Steen, Antonius FW;Huber, Robert;van Soest, Gijs and Huber, Robert Alexander},
   title = {Heartbeat optical coherence tomography enables accurate in vivo stents imaging: a quantitative image processing study (Conference Presentation)},
   booktitle = {Diagnostic and Therapeutic Applications of Light in Cardiology 2019},
   publisher = {International Society for Optics and Photonics},
   volume = {10855},
   pages = {1085506},
   type = {Conference Proceedings}
}
P Schulz-Hildebrandt, and G H\"{u}ttmann,
Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations, in 2nd Canterbury Conference on OCT with Emphasis on Broadband Optical Sources , 2018. pp. 105910O.
DOI:10.1117/12.2303755
ISBN:9781510616745
Bibtex: BibTeX
@inproceedings{Schulz-Hildebrandt2018a,
title = {Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations},
author = {Schulz-Hildebrandt,H; M\"{u}nter, M; Ahrens,M; Spahr, H; Hillmann, D; K\"{o}nig, P and  H\"{u}ttmann, G},
doi = {10.1117/12.2303755},
isbn = {9781510616745},
year = {2018},
date = {2018-03-05},
booktitle = {2nd Canterbury Conference on OCT with Emphasis on Broadband Optical Sources},
volume = {10591},
pages = {105910O},
abstract = {Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon’s entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.},
keywords = {OCM},
pubstate = {published},
tppubtype = {inproceedings}
}
Tae Kwann Park, Juhye Choi, Young Shin Kim, Jina Kim, Ralf Brinkmann, Jungmook Lyu, and Jung Woo Han,
Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes, Graefe's Archive for Clinical and Experimental Ophthalmology , pp. 341-353, 2018.
Datei: s00417-017-3883-7
Bibtex: BibTeX
@article{Brinkmann2018,
   author = {Han, J W; Choi, J; Kim, Y S, Kim, J; Brinkmann, R; Lyu, J and Park, T K},
   title = {Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   
   pages = {341-353},
 
URL= {https://doi.org/10.1007/s00417-017-3883-7},
   year = {2018},
   type = {Journal Article}
}
D Smits, and E.B Vander Poorten,
Development and Experimental Validation of a Combined FBG Force and OCT Distance Sensing Needle for Robot-Assisted Retinal Vein Cannulation, 2018. pp. 129-134.
DOI:10.1109/ICRA.2018.8460983
Bibtex: BibTeX
@inproceedings{Smits2018,
title = {Development and Experimental Validation of a Combined FBG Force and OCT Distance Sensing Needle for Robot-Assisted Retinal Vein Cannulation},
author = {Smits, J; Ourak, M; Gijbels, A;  Esteveny, L; Borghesan, G; Schoevaerdts, L; Willekens; Stalmans, P; Lankenau, E; Schulz-Hildebrandt, H; H\"{u}ttmann, G; Reynaerts, D and  Vander Poorten, E.B},

doi = {10.1109/ICRA.2018.8460983},
year = {2018},
date = {2018-09-20},
journal = {2018 IEEE Intern Conf Robot a Automation (ICRA)},
pages = {129-134},
abstract = {Retinal Vein Occlusion is a common retinal vascular disorder which can cause severe loss of vision. Retinal vein cannulation followed by injection of an anti-coagulant into the affected vein is a promising treatment. However, given the scale and fragility of the surgical workfield, this procedure is considered too high-risk to perform manually. A first successful robot-assisted procedure has been demonstrated. Even though successful, the procedure remains extremely challenging. This paper aims at providing a solution for the limited perception of instrument-tissue interaction forces as well as depth estimation during retinal vein cannulation. The development of a novel combined force and distance sensing cannulation needle relying on Fiber Bragg grating (FBG) and Optical Coherence Tomography (OCT) A-scan technology is reported. The design, the manufacturing process, the calibration method, and the experimental characterization of the produced sensor are discussed. 
The functionality of the combined sensing modalities and the real-time distance estimation algorithm are validated respectively on in-vitro and ex-vivo models.},
keywords = {Endoskope},
pubstate = {published},
tppubtype = {inproceedings}
}
Elisabeth Richert, Stefan Koinzer, Jan Tode, Kerstin Schlott, Ralf Brinkmann, Jost Hillenkamp, Alexa Klettner, and Johann Roider,
Release of Different Cell Mediators During Retinal Pigment Epithelium Regeneration Following Selective Retina Therapy, Investigative Ophthalmology & Visual Science , pp. 1323-1331, 2018.
DOI:10.1167/iovs.17-23163
Datei: iovs.17-23163
Bibtex: BibTeX
@article{Brinkmann2018,
   author = {Richert, E; Koinzer, S; Tode, J; Schlott, K; Brinkmann, R; Hillenkamp, J; Klettner, A and Roider, J},
   title = {Release of Different Cell Mediators During Retinal Pigment Epithelium Regeneration Following Selective Retina Therapy},
   journal = {Investigative Ophthalmology & Visual Science},
   
   pages = {1323-1331},
   ISSN = {1552-5783},
  
   url = {http://dx.doi.org/10.1167/iovs.17-23163},
   year = {2018},
   type = {Journal Article}
}
Katharina Kern, Carla Lotta Mertineit, Ralf Brinkmann, and Yoko Miura,
Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells, Exp Eye Res , pp. 117-126, 2018.
DOI:10.1016/j.exer.2018.02.013
Bibtex: BibTeX
@article{Miura2018,
   author = {Kern, K; Mertineit, C L; Brinkmann, R and Miura, Y},
   title = {Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells},
   journal = {Exp Eye Res},
  
   pages = {117-126},
   ISSN = {1096-0007 (Electronic)
0014-4835 (Linking)},
   DOI = {10.1016/j.exer.2018.02.013},
   year = {2018},
   type = {Journal Article}
}
C L Evers, and D Manstein,
Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM, Scientific Reports , 2018.
DOI:10.1038/s41598-018-27093-x
Bibtex: BibTeX
@article{Evers2018,
   author = {Evers, M ;Salma, N; Osseiran, S; Casper, M; Birngruber, R; Evans, C L and Manstein, D},
   title = {Enhanced quantification of metabolic activity for individual adipocytes by label-free FLIM},
   journal = {Scientific Reports},
   
   DOI = {10.1038/s41598-018-27093-x},
   
   year = {2018},
   type = {Journal Article}
}
Jan Philip Kolb, Tom Pfeiffer, Matthias Eibl, Hubertus Hakert, and Robert Huber,
High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates, Biomed. Opt. Express , vol. 9, no. 1, pp. 120-130, 01 2018. Optica Publishing Group.
DOI:10.1364/BOE.9.000120
Bibtex: BibTeX
@article{Kolb:18,
author = {Jan Philip Kolb and Tom Pfeiffer and Matthias Eibl and Hubertus Hakert and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Medical optics instrumentation; Lasers, fiber; Medical and biological imaging; Ophthalmic optics and devices ; Optical coherence tomography; Adaptive optics; Image quality; In vivo imaging; Mode locking; Ophthalmic imaging; Three dimensional imaging},
number = {1},
pages = {120--130},
publisher = {Optica Publishing Group},
title = {High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates},
volume = {9},
month = {Jan},
year = {2018},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-9-1-120},
doi = {10.1364/BOE.9.000120},
abstract = {We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2\&\#x2219;\&\#x202F;417 kHz\&\#x202F; $=$ \&\#x202F;834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 \&\#x00B5;m axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 \&\#x00B5;m axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.},
}
D. Spahr,
Interferometric detection of 3D motion using computational subapertures in optical coherence tomography, Opt Expr , pp. 18803--18816, 2018. OSA.
Datei: OE.26.018803
Bibtex: BibTeX
@article{Spahr:18,
author = { Spahr, H; Pfäffle, C; Koch,C; Sudkamp, H; Hüttmann, G und Hillmann, D},
journal = {Opt Expr},
keywords = {Funktion, Fullfield},

pages = {18803--18816},
publisher = {OSA},
title = {Interferometric detection of 3D motion using computational subapertures in optical coherence tomography},


year = {2018},
url = {https://doi.org/10.1364/OE.26.018803},

abstract = {Doppler optical coherence tomography (OCT) quantifies axial motion with high precision, whereas lateral motion cannot be detected by a mere evaluation of phase changes. This problem was solved by the introduction of three-beam Doppler OCT, which, however, entails a high experimental effort. Here, we present the numerical analogue to this experimental approach. Phase-stable complex-valued OCT datasets, recorded with full-field swept-source OCT, are filtered in the Fourier domain to limit imaging to different computational subapertures. These are used to calculate all three components of the motion vector with interferometric precision. As known from conventional Doppler OCT for axial motion only, the achievable accuracy exceeds the actual imaging resolution by orders of magnitude in all three dimensions. The feasibility of this method is first demonstrated by quantifying micro-rotation of a scattering sample. Subsequently, a potential application is explored by recording the 3D motion vector field of tissue during laser photocoagulation in ex-vivo porcine retina.},
}

Ralph Hakert,
Label-free imaging of tumorous tissue in the Raman fingerprint region with time-encoded (TICO) stimulated Raman scattering (Conference Presentation), in Multiphoton Microscopy in the Biomedical Sciences XIX , International Society for Optics and Photonics, 2018. pp. 108821R.
Bibtex: BibTeX
@inproceedings{Hakert2019,
   author = {Hakert, Hubertus;Eibl, Matthias;Karpf, Sebastian;Wollenberg, Barbara;Pries, Ralph and Huber, Robert},
   title = {Label-free imaging of tumorous tissue in the Raman fingerprint region with time-encoded (TICO) stimulated Raman scattering (Conference Presentation)},
   booktitle = {Multiphoton Microscopy in the Biomedical Sciences XIX},
   publisher = {International Society for Optics and Photonics},
   volume = {10882},
   pages = {108821R},
   type = {Conference Proceedings}
}
Robert Wang, and Gijs van Soest,
Megahertz intravascular Doppler optical coherence tomography enables simultaneous morphological and flow pattern imaging, in Diagnostic and Therapeutic Applications of Light in Cardiology 2019 , International Society for Optics and Photonics, 2018. pp. 1085503.
Bibtex: BibTeX
@inproceedings{Wang2019-3,
   author = {Wang, Tianshi;Pfeiffer, Tom;Daemen, Joost;Mastik, Frits;Wieser, Wolfgang;van der Steen, AFW;Huber, Robert and van Soest, Gijs},
   title = {Megahertz intravascular Doppler optical coherence tomography enables simultaneous morphological and flow pattern imaging},
   booktitle = {Diagnostic and Therapeutic Applications of Light in Cardiology 2019},
   publisher = {International Society for Optics and Photonics},
   volume = {10855},
   pages = {1085503},
   type = {Conference Proceedings}
}
P Schulz-Hildebrandt, and Gereon Hüttmann,
Novel endoscope with increased depth of field for imaging human nasal tissue by microscopic optical coherence tomography, Biomedical Optics Express , pp. 636-647, 2018.
DOI:10.1364/BOE.9.000636
ISBN:10.1364/BOE.9.000636
Datei: abstract.cfm
Bibtex: BibTeX
@article{schulz2018novel,
title = {Novel endoscope with increased depth of field for imaging human nasal tissue by microscopic optical coherence tomography},
author = {Schulz-Hildebrandt, H; Pieper, M; Stehmar,C; Ahrens, M; Idel, C; Wollenberg,B; K\"{o}nig,P and Gereon H\"{u}ttmann},
editor = {Optic Socie Amer},
url = {https://www.osapublishing.org/abstract.cfm?URI=boe-9-2-636
https://www.osapublishing.org/boe/viewmedia.cfm?uri=boe-9-2-636&seq=0},
doi = {10.1364/BOE.9.000636},
isbn = {10.1364/BOE.9.000636},
year = {2018},
date = {2018-01-16},
journal = {Biomedical Optics Express},

pages = {636-647},
abstract = {Intravital microscopy (IVM) offers the opportunity to visualize static and dynamic changes of tissue on a cellular level. It is a valuable tool in research and may considerably improve clinical diagnosis. In contrast to confocal and non-linear microscopy, optical coherence tomography (OCT) with microscopic resolution (mOCT) provides intrinsically cross-sectional imaging. Changing focus position is not needed, which simplifies especially endoscopic imaging. For in-vivo imaging, here we are presenting endo-microscopic OCT (emOCT). A graded-index-lens (GRIN) based 2.75 mm outer diameter rigid endoscope is providing 1.5 \textendash 2 μm nearly isotropic resolution over an extended field of depth. Spherical and chromatic aberrations are used to elongate the focus length. Simulation of the OCT image formation, suggests overall a better image quality in this range compared to a focused Gaussian beam. Total imaging depth at a reduced sensitivity and lateral resolution is more than 200 μm. Using a frame rate of 80 Hz cross-sectional images of concha nasalis were demonstrated in humans, which could resolve cilial motion, cellular structures of the epithelium, vessels and blood cells. Mucus transport velocity was determined successfully. The endoscope may be used for diagnosis and treatment control of different lung diseases like cystic fibrosis or primary ciliary dyskinesia, which manifest already at the nasal mucosa.},
keywords = {Endoskope, OCM},
pubstate = {published},
tppubtype = {article}
}
D Casper, and G H\"{u}ttmann,
Optimized segmentation and characterization of capillary networks using OCT (Conference Presentation), in Proc. SPIE 10467, Photonics in Dermatology and Plastic Surgery 2018 , 2018.
DOI:10.1117/12.2292005
Datei: 12.2292005
Bibtex: BibTeX
@conference{Casper2018,
title = {Optimized segmentation and characterization of capillary networks using OCT (Conference Presentation)},
author = {Casper, M; Schulz-Hildebrandt, H; Evers, M; Birngruber, R; Manstein, D and H\"{u}ttmann, G },
url = {https://doi.org/10.1117/12.2292005},
doi = {10.1117/12.2292005},
year = {2018},
date = {2018-03-14},
booktitle = {Proc. SPIE 10467, Photonics in Dermatology and Plastic Surgery 2018},
journal = {Proc.SPIE},

abstract = {The ability to image the physiology of microvasculature with high spatial resolution in three dimensions while investigating structural changes of skin, is essential for understanding the complex processes of skin aging, wound healing and disease development. Further, the quantitative, automatic assessment of these changes enables to analyze large amounts of image data in an abstract but comprehensive manner. 
However, previous work using OCT with methods of angiography was imaging less scattering, hence more challenging tissue than skin, such as brain and retina tissue. The published methods for capillary segmentation were mostly non-automatic, poorly benchmarked against state-of-the-art methods of computer vision and not applied to investigate medical processes and studies in a comprehensive fashion. 
Here, segmentation of capillaries in skin is reported and its efficacy is demonstrated in both, a 
longitudinal mouse study and a preliminary study in humans. By combining state-of-the-art image 
processing methods in an optimized way, we were able to improve the segmentation results and analyze the impact of each post-processing step. 
Furthermore, this automatic segmentation enabled us to analyze big amounts of 
datasets automatically and derive meaningful conclusions for the planning of clinical studies. 
With this work, optical coherence tomography is combined with methods of computer vision to a diagnostic 
tool with unique capabilities to characterize vascular diversity and provide extraordinary 
opportunities for dermatological investigation in both, clinics and research.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}

2017

Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Christian Jirauschek, and Robert Huber,
Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification, Opt. Lett. , vol. 42, no. 21, pp. 4406-4409, Nov. 2017. Optica Publishing Group.
DOI:10.1364/OL.42.004406
Bibtex: BibTeX
@article{Eibl:17,
author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Torben Bl\"{o}mker and Jan Philip Kolb and Christian Jirauschek and Robert Huber},
journal = {Opt. Lett.},
keywords = {Lasers, fiber; Lasers, Raman; Nonlinear optics, four-wave mixing; Scattering, stimulated Raman; Lasers, ytterbium ; Fiber lasers; Master oscillator power amplifiers; Nanosecond pulses; Raman scattering; Stimulated Brillouin scattering; Wavelength conversion},
number = {21},
pages = {4406--4409},
publisher = {Optica Publishing Group},
title = {Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification},
volume = {42},
month = {Nov},
year = {2017},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-42-21-4406},
doi = {10.1364/OL.42.004406},
abstract = {We report on a multi-color fiber laser based on four-wave mixing (FWM) and stimulated Raman scattering (SRS), delivering rapidly wavelength switchable narrowband output at 1064, 1122, and 1186\&\#x00A0;nm. High-power pulses from a nanosecond pulsed fiber master oscillator power amplifier at 1064\&\#x00A0;nm are combined with 1122\&\#x00A0;nm of seed light for Raman amplification at the first Stokes order in a standard single-mode fiber. With increasing power, we observe a narrowband spectral component at 1186\&\#x00A0;nm, without any additional seed or resonator at this wavelength. We analyze this occurrence of a narrowband second Stokes order both experimentally and theoretically and suggest it is a result of FWM seeding of the SRS amplification in the fiber. We demonstrate that the wavelength shifting can be controlled electronically within microseconds for very rapid and even pulse-to-pulse wavelength changes. This wavelength conversion method can extend the spectral coverage of single-wavelength fiber lasers for biomedical imaging.},
}
Tianshi Wang, Tom Pfeiffer, Min Wu, Wolfgang Wieser, Gaetano Amenta, Wolfgang Draxinger, Antonius F. W. van der Steen, Robert Huber, and Gijs van Soest,
Thermo-elastic optical coherence tomography, Optica Publishing Group, 092017. pp. 3466-3469.
DOI:10.1364/OL.42.003466
Bibtex: BibTeX
@article{Wang:17,
author = {Tianshi Wang and Tom Pfeiffer and Min Wu and Wolfgang Wieser and Gaetano Amenta and Wolfgang Draxinger and Antonius F. W. van der Steen and Robert Huber and Gijs van Soest},
journal = {Opt. Lett.},
keywords = {Imaging systems; Medical and biological imaging; Optical coherence tomography; Lasers, pulsed ; Fourier domain mode locking; Functional imaging; Laser beams; Nanosecond pulses; Optical coherence tomography; Phantom studies},
number = {17},
pages = {3466--3469},
publisher = {Optica Publishing Group},
title = {Thermo-elastic optical coherence tomography},
volume = {42},
month = {Sep},
year = {2017},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-42-17-3466},
doi = {10.1364/OL.42.003466},
abstract = {The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.},
}
S Ataka, S Ogawa, Yoko Miura, Takeya Kohno, and Kunihiko Shiraki,
A Comparison of Intraoperative Metrics between the Infiniti with and the Centurion without Intelligent Phacoemulsification Systems, Journal of Eye & Cataract Surgery , vol. 3, Aug. 2017.
DOI:10.21767/2471-8300.100034
Bibtex: BibTeX
@article{Miura2017,
   author = { Ataka,S;Ogawa,S; Miura,Y; Kohno,T and Shiraki, K},
   title = {A Comparison of Intraoperative Metrics between the Infiniti with and the Centurion without Intelligent Phacoemulsification Systems},
   journal = {Journal of Eye & Cataract Surgery},
   volume = {3},
   ISSN = {2571-8300},
Abstract = {Purpose: To compare the efficiency and safety of two
phacoemulsification systems, the Infiniti with intelligent
phacoemulsification (IP) and the Centurion without IP, in
terms of intraoperative metrics of phacoemulsification and
the occurrences of adverse events and intraoperative tip
obstruction.
Design: Comparative case series.
Methods: A consecutive series of 340 eyes (151 eyes with
the Infiniti, 189 eyes with the Centurion) was evaluated. A
2.4 mm sclerocorneal incision was used with the Infiniti, and
a 2.0 mm incision was used with the Centurion.
Phacoemulsification of the nucleus was performed using
the phaco chop technique, with the IP function of the
Infiniti turned on and the IP mode of the Centurion turned
off. From among the parameters displayed on the panels of
both devices, ultrasound (US) time, cumulative dissipated
energy (CDE), aspiration time, and estimated balanced salt
solution (BSS) aspiration volume were investigated and
compared between the devices. Results: A comparison of all
subjects found significant differences between the two
devices in mean CDE (p=0.02) and mean aspiration time
(p=0.003), but not in mean US time (p=0.43) or mean
estimated BSS aspiration volume (p=0.07). For grade 3
nuclei, all parameters of mean US time (p=0.0044), mean
CDE (p ≤ 0.001), mean aspiration time (p<0.001), and mean
estimated BSS aspiration volume (p=0.001) showed
significant differences favoring the Centurion.
Conclusions: Compared to the Infiniti with IP mode, cataract
surgery with the Centurion without IP mode is likely to be
performed with less phacoemulsification energy and higher
efficiency.},
   DOI = {10.21767/2471-8300.100034},
   year = {2017},
   type = {Journal Article}
}
Jan Philip Kolb, Julian Klee, Tom Pfeiffer, and Robert Huber,
1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160J.
DOI:10.1117/12.2286854
Bibtex: BibTeX
@inproceedings{10.1117/12.2286854,
author = {Jan Philip Kolb and Julian Klee and Tom Pfeiffer and Robert Huber},
title = {{1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT}},
volume = {10416},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media II},
editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {104160J},
abstract = {We present a new design of a 1060nm Fourier Domain Mode Locked-Laser (FDML-Laser) that combines 1.67 MHz A-scan rate with a centimeter scale coherence length. The extended coherence length is achieved by synchronizing the cavity roundtrip time over the 75 nm sweep with a relative accuracy of 10<sup>-7</sup>. We will show that this requires careful combination of multiple fiber types in the cavity with a gradient heated chirped Fiber Bragg grating.},
keywords = {optical coherence tomograhy, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT},
year = {2017},
doi = {10.1117/12.2286854},
URL = {https://doi.org/10.1117/12.2286854}
}
Tom Pfeiffer, Wolfgang Draxinger, Christin Grill, and Robert Huber,
Long-range live 3D-OCT at different spectral zoom levels, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160L.
DOI:10.1117/12.2287484
Bibtex: BibTeX
@inproceedings{10.1117/12.2287484,
author = {Tom Pfeiffer and Wolfgang Draxinger and Christin Grill and Robert Huber},
title = {{Long-range live 3D-OCT at different spectral zoom levels}},
volume = {10416},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media II},
editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {104160L},
abstract = {We demonstrate that the 3.2 MHz a-scan rate and the improved coherence of our new low noise FDML laser enables live 3D-OCT with different spectral zooms and up to 10 cm of imaging range.},
keywords = {Optical coherence tomography, Fourier Domain Mode Locking, FDML, OCT},
year = {2017},
doi = {10.1117/12.2287484},
URL = {https://doi.org/10.1117/12.2287484}
}
Hubertus Hakert, Matthias Eibl, Sebastian Karpf, and Robert Huber,
Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition, in Advances in Microscopic Imaging , Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So, Eds. SPIE, 072017. pp. 1041408.
DOI:10.1117/12.2287947
Bibtex: BibTeX
@inproceedings{10.1117/12.2287947,
author = {Hubertus Hakert and Matthias Eibl and Sebastian Karpf and Robert Huber},
title = {{Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition}},
volume = {10414},
booktitle = {Advances in Microscopic Imaging},
editor = {Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1041408},
abstract = {Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a
specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can
unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced
manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between
specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the
tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first
approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences
where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based
on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically
controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole
spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a
uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained.
Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the
Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with
polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We
achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the
applied voice coil stage for scanning the sample currently limits even faster acquisition.},
keywords = {nonlinear microscopy, fiber optics imaging, stimulated raman scattering microscopy, time encoded, sparse sampling, Raman spectroscopy , Fourier Domain Mode Locked Laser, FDML, Lasers, fiber},
year = {2017},
doi = {10.1117/12.2287947},
URL = {https://doi.org/10.1117/12.2287947}
}
Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Daniel Weng, Tom Pfeiffer, Jan Philip Kolb, and Robert Huber,
Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup, in Advances in Microscopic Imaging , Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So, Eds. SPIE, 072017. pp. 1041403.
DOI:10.1117/12.2286035
Bibtex: BibTeX
@inproceedings{10.1117/12.2286035,
author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Daniel Weng and Tom Pfeiffer and Jan Philip Kolb and Robert Huber},
title = {{Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup }},
volume = {10414},
booktitle = {Advances in Microscopic Imaging},
editor = {Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1041403},
abstract = {Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.},
keywords = {Nonlinear microscopy, Fluorescence microscopy, Fiber optics imaging, Lifetime-based sensing, Lasers, fiber, Nonlinear optics, fibers},
year = {2017},
doi = {10.1117/12.2286035},
URL = {https://doi.org/10.1117/12.2286035}
}
Josef Maertz, Kathrin J. Mohler, Jan Philip Kolb, Thomas Klein, Aljoscha Neubauer, Anselm Kampik, Siegfried Priglinger, Wolfgang Wieser, Robert Huber, and Armin Wolf,
INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes, Retina , vol. 37, no. 5, pp. 906-914, 05 2017.
DOI:10.1097/iae.0000000000001260
Bibtex: BibTeX
@article{Maertz2017,
   author = {Maertz, J. and Mohler, K. J. and Kolb, J. P. and Klein, T. and Neubauer, A. and Kampik, A. and Priglinger, S. and Wieser, W. and Huber, R. and Wolf, A.},
   title = {INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes},
   journal = {Retina},
   volume = {37},
   number = {5},
   pages = {906-914},
   DOI = {10.1097/iae.0000000000001260},
   year = {2017},
keywords = {AG-Huber_OCT},
   type = {Journal Article}
}
Sebastian Karpf, Matthias Eibl, Wolfgang Wieser, Thomas Klein, and Robert Huber,
Shot-Noise Limited Time-Encoded Raman Spectroscopy, Journal of Spectroscopy , vol. 2017, pp. 1-6, 03 2017. Hindawi.
DOI:10.1155/2017/9253475
Bibtex: BibTeX
@article{Karpf2017,
   author = {Karpf, Sebastian and Eibl, Matthias and Wieser, Wolfgang and Klein, Thomas and Huber, Robert},
   title = {Shot-Noise Limited Time-Encoded Raman Spectroscopy},
   journal = {Journal of Spectroscopy},
   volume = {2017},
   pages = {1-6},
   url = {https://doi.org/10.1155/2017/9253475},
   year = {2017},
keywords = {AG-Huber_NL},
   type = {Journal Article}
}
Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Daniel Weng, Torben Blömker, and Robert Huber,
Pulse-to-pulse wavelength switching of diode based fiber laser for multi-color multi-photon imaging, in Fiber Lasers XIV: Technology and Systems , Craig A. Robin and Ingmar Hartl, Eds. SPIE, 032017. pp. 100831C.
DOI:10.1117/12.2251965
Bibtex: BibTeX
@inproceedings{10.1117/12.2251965,
author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Daniel Weng and Torben Bl{\"o}mker and Robert Huber},
title = {{Pulse-to-pulse wavelength switching of diode based fiber laser for multi-color multi-photon imaging}},
volume = {10083},
booktitle = {Fiber Lasers XIV: Technology and Systems},
editor = {Craig A. Robin and Ingmar Hartl},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {100831C},
abstract = {We present an entirely fiber based laser source for non-linear imaging with a novel approach for multi-color excitation. The high power output of an actively modulated and amplified picosecond fiber laser at 1064 nm is shifted to longer wavelengths by a combination of four-wave mixing and stimulated Raman scattering. By combining different fiber types and lengths, we control the non-linear wavelength conversion in the delivery fiber itself and can switch between 1064 nm, 1122 nm, and 1186 nm on-the-fly by tuning the pump power of the fiber amplifier and modulate the seed diodes. This is a promising way to enhance the applicability of short pulsed laser diodes for bio-molecular non-linear imaging by reducing the spectral limitations of such sources. In comparison to our previous work [1, 2], we show for the first time two-photon imaging with the shifted wavelengths and we demonstrate pulse-to-pulse switching between the different wavelengths without changing the configuration.},
keywords = {stimulated raman scattering, two-photon imaging, fiber amplifier, four-wave-mixing, wavelength conversion, non-linear imaging},
year = {2017},
doi = {10.1117/12.2251965},
URL = {https://doi.org/10.1117/12.2251965}
}
Max-Heinrich Laves, Andreas Schoob, Lüder A. Kahrs, Tom Pfeiffer, Robert Huber, and Tobias Ortmaier,
Feature tracking for automated volume of interest stabilization on 4D-OCT images, in Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling , Robert J. Webster III and Baowei Fei, Eds. SPIE, 032017. pp. 101350W.
DOI:10.1117/12.2255090
Bibtex: BibTeX
@inproceedings{10.1117/12.2255090,
author = {Max-Heinrich Laves and Andreas Schoob and L{\"u}der A. Kahrs and Tom Pfeiffer and Robert Huber and Tobias Ortmaier},
title = {{Feature tracking for automated volume of interest stabilization on 4D-OCT images}},
volume = {10135},
booktitle = {Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling},
editor = {Robert J. Webster III and Baowei Fei},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {101350W},
abstract = {A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance.},
keywords = {4D imaging, maximum intensity projection, optical coherence tomography, feature tracking},
year = {2017},
doi = {10.1117/12.2255090},
URL = {https://doi.org/10.1117/12.2255090}
}
Matthias Eibl, Sebastian Karpf, Hubertus Hakert, Daniel Weng, and Robert Huber,
Two-photon-excited fluorescence (TPEF) and fluorescence lifetime imaging (FLIM) with sub-nanosecond pulses and a high analog bandwidth signal detection, in Multiphoton Microscopy in the Biomedical Sciences XVII , Ammasi Periasamy and Peter T. C. So and Karsten König and Xiaoliang S. Xie, Eds. SPIE, 022017. pp. 100691F.
DOI:10.1117/12.2250831
Bibtex: BibTeX
@inproceedings{10.1117/12.2250831,
author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Daniel Weng and Robert Huber},
title = {{Two-photon-excited fluorescence (TPEF) and fluorescence lifetime imaging (FLIM) with sub-nanosecond pulses and a high analog bandwidth signal detection}},
volume = {10069},
booktitle = {Multiphoton Microscopy in the Biomedical Sciences XVII},
editor = {Ammasi Periasamy and Peter T. C. So and Karsten K{\"o}nig and Xiaoliang S. Xie},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {100691F},
abstract = {Two-photon excited fluorescence (TPEF) microscopy and fluorescence lifetime imaging (FLIM) are powerful imaging techniques in bio-molecular science. The need for elaborate light sources for TPEF and speed limitations for FLIM, however, hinder an even wider application. We present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is synchronized to a high analog bandwidth signal detection for single shot TPEF- and single shot FLIM imaging. The actively modulated pulses at 1064nm from the fiber laser are adjustable from 50ps to 5ns with kW of peak power. At a typically applied pulse lengths and repetition rates, the duty cycle is comparable to typically used femtosecond pulses and thus the peak power is also comparable at same cw-power. Hence, both types of excitation should yield the same number of fluorescence photons per time on average when used for TPEF imaging. However, in the 100ps configuration, a thousand times more fluorescence photons are generated per pulse. In this paper, we now show that the higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate the performance of our system, we acquired FLIM images of a Convallaria sample with pixel rates of 1 MHz where the lifetime information is directly measured with a fast real time digitizer. With the presented results, we show that longer pulses in the many-10ps to nanosecond regime can be readily applied for TPEF imaging and enable new imaging modalities like single pulse FLIM.},
keywords = {FLIM, TPEF, fiber laser, endoscope, MOPA, Nonlinear microscopy, Fluorescence microscopy, Lifetime-based sensing},
year = {2017},
doi = {10.1117/12.2250831},
URL = {https://doi.org/10.1117/12.2250831}
}
Tianshi Wang, Tom Pfeiffer, Min Wu, Wolfgang Wieser, Wolfgang Draxinger, Antonius F. W. van der Steen, Robert Huber, and Gijs van Soest,
Short pulse laser induced thermo-elastic deformation imaging, in Optical Interactions with Tissue and Cells XXVIII , E. Duco Jansen and Hope Thomas Beier, Eds. SPIE, 022017. pp. 100620C.
DOI:10.1117/12.2251502
Bibtex: BibTeX
@inproceedings{10.1117/12.2251502,
author = {Tianshi Wang and Tom Pfeiffer and Min Wu and Wolfgang Wieser and Wolfgang Draxinger and Antonius F. W. van der Steen and Robert Huber and Gijs van Soest},
title = {{Short pulse laser induced thermo-elastic deformation imaging}},
volume = {10062},
booktitle = {Optical Interactions with Tissue and Cells XXVIII},
editor = {E. Duco Jansen and Hope Thomas Beier},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {100620C},
abstract = {Absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue, i.e. a sub-micrometer scale displacement happens within a couple of microseconds. In this study, we initially investigate the depth-resolved deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. Functional images can be reconstructed based on the detected deformation, which enables a new imaging modality called thermo-elastic deformation imaging (TDI). Our results show that the associated displacement is related to the optical absorption of the short laser pulses. The TDI images can provide tissue type information in addition to the conventional OCT images.},
keywords = {thermal-elastic deformation, optical coherence tomography},
year = {2017},
doi = {10.1117/12.2251502},
URL = {https://doi.org/10.1117/12.2251502}
}
Thomas Klein, and Robert Huber,
High-speed OCT light sources and systems [Invited], Biomed. Opt. Express , vol. 8, no. 2, pp. 828-859, 02 2017. Optica Publishing Group.
DOI:10.1364/BOE.8.000828
Bibtex: BibTeX
@article{Klein:17,
author = {Thomas Klein and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Imaging systems; Optical coherence tomography; Lasers and laser optics; Lasers, tunable; Optical coherence tomography; Full field optical coherence tomography; High speed imaging; Image quality; Imaging systems; Light wavelength; X ray imaging},
number = {2},
pages = {828--859},
publisher = {Optica Publishing Group},
title = {High-speed OCT light sources and systems \[Invited\]},
volume = {8},
month = {Feb},
year = {2017},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-8-2-828},
doi = {10.1364/BOE.8.000828},
abstract = {Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.},
}
Christian Jirauschek,
Efficient simulation of the swept-waveform polarization dynamics in fiber spools and Fourier domain mode-locked (FDML) lasers, Journal of the Optical Society of America B , vol. 34, no. 6, pp. 1135-1146, 2017.
DOI:10.1364/JOSAB.34.001135
Datei: abstract.cfm
Bibtex: BibTeX
  @article{Jirauschek2017,
   author = {Jirauschek, Christian and Huber, Robert},
   title = {Efficient simulation of the swept-waveform polarization dynamics in fiber spools and Fourier domain mode-locked (FDML) lasers},
   journal = {Journal of the Optical Society of America B},
   volume = {34},
   number = {6},
   pages = {1135-1146},
   DOI = {10.1364/JOSAB.34.001135},
   url = {http://josab.osa.org/abstract.cfm?URI=josab-34-6-1135},
   year = {2017},
   type = {Journal Article}
}

   abstract = {We present a theoretical model and its efficient numerical implementation for the simulation of wavelength-swept waveform propagation in fiber systems such as Fourier domain mode-locked (FDML) lasers, fully accounting for the polarization dynamics in fiber spools and further polarization-dependent optical components in the setup. This approach enables us to perform long-time simulations of the FDML laser dynamics over more than 100,000 cavity round trips, as required for some FDML configurations to ensure convergence to the steady-state operating regime. The model is validated against experimental results for single propagation through a fiber spool and for stationary FDML operation. The polarization dynamics due to the fiber spool, inducing polarization-mode dispersion, bending birefringence as well as cross-phase modulation, and other optical components such as the Faraday-rotating mirror used for polarization compensation is thoroughly investigated.},
   keywords = {Laser theory
Lasers, tunable
Optical coherence tomography
Birefringence
Polarization
Pulses
AG-Huber_FDML},
   url = {https://www.osapublishing.org/josab/abstract.cfm?uri=josab-34-6-1135},
   year = {2017},
   type = {Journal Article}
}
F Strauch, and H. P Urbach,
Study of surface modes on a vibrating electrowetting liquid lens, Applied physics Letters , pp. 171106, 2017.
DOI:10.1063/1.4999562
Datei: 1.4999562
Bibtex: BibTeX
@article{Strauch2017,
   author = {Strauch, M;Shao, Y;Bociort, F and Urbach, H. P},
   title = {Study of surface modes on a vibrating electrowetting liquid lens},
journal = {Applied physics Letters},

  
   pages = {171106},
   DOI = {10.1063/1.4999562},
keywords = {lenses,surface waves(fluid),vibrations,wetting},
abstract = {The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
We acknowledge the use of an educational licence of CODE V and LightTools. This work was funded through the Spectr@phone project (IPD 12017) of the IOP Photonic Devices program of RVO.},

   url = {https://aip.scitation.org/doi/abs/10.1063/1.4999562},
   year = {2017},
   type = {Journal Article}
}
Yoko Miura, Joachim Pruessner, Carla Lotta Mertineit, Katharina Kern, Michael Münter, Moritz Moltmann, Veit Danicke, and Ralf Brinkmann,
Continuous-wave Thulium Laser for Heating Cultured Cells to Investigate Cellular Thermal Effects, J Vis Exp , 2017.
DOI:10.3791/54326
Bibtex: BibTeX
@article{Miura2017,
   author = {Miura, Y; Pruessner, J; Mertineit, C L; Kern, K; Muenter, M; Moltmann, M; Danicke, V and Brinkmann, R},
   title = {Continuous-wave Thulium Laser for Heating Cultured Cells to Investigate Cellular Thermal Effects},
   journal = {J Vis Exp},
   
   ISSN = {1940-087x},
   DOI = {10.3791/54326},
   year = {2017},
   type = {Journal Article}
  } 

Malte Casper, Hinnerk Schulz-Hildebrandt, Michael Evers, Cuc Nguyen, Gereon Hüttmann, and Dieter Manstein,
Imaging cold-induced vasodynamic behaviour in skin using OCT for microangiography (Conference Presentation), in Proceedings Volume 10037, Photonics in Dermatology and Plastic Surgery , Spie, Eds. 2017.
DOI:doi: 10.1117/12.2251485
Bibtex: BibTeX
@conference{Casper2017,
title = {Imaging cold-induced vasodynamic behaviour in skin using OCT for microangiography (Conference Presentation)},
author = {Malte Casper and Hinnerk Schulz-Hildebrandt and Michael Evers and Cuc Nguyen and Reginald Birngruber and Gereon H\"{u}ttmann and Dieter Manstein},
editor = {Spie},
doi = {doi: 10.1117/12.2251485},
year = {2017},
date = {2017-04-19},
booktitle = {Proceedings Volume 10037, Photonics in Dermatology and Plastic Surgery},
volume = {10037OS},
abstract = {In dermatology the reflexes of vasoconstriction and vasodilation are known as important mechanisms of thermoregulation of the inner body. Imaging the physiology of microvasculature of the skin with high spatial resolution in three dimensions while reacting to changes in temperature is crucial for understanding the complex processes of vasodynamics, which result in constriction and dilation of vessels. However, previous studies using Laser-Doppler flowmetry and -imaging could not provide reliable angiographic images which allow to quantify changes in blood vessel diameter. Here, we report a different approach for angiographic imaging of microvasculature of a anaesthetized rodent model using speckle variance optical coherence tomography (svOCT) during and after localized cooling. Therefore a commercial OCT with a center wavelength of 1.3 μm and a spatial resolution of 13µm was used in combination with a custom built cooling device to image such reflexes at the mouse ear pinna and dorsal skinfold. Cooling was applied in steps of 2−5◦ C starting at the baseline temperature of 27◦ C down to −10◦ C. To our surprise and in contrast to the general opinion in literature, we were able to observe that the majority of vessels with a diameter larger than 20 μm maintain perfused with a constant diameter when the tissue is cooled from baseline to subzero temperatures. However, vasoconstriction was observed very rarely and only in veins, which led to their occlusion. The results of this experiment lead us to reconsider essential aspects of previous understanding of temperature-induced vasodynamics in cutaneous microvasculature.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Ievgen Verbytskyi, Michael Münter, Christian Buj, and Ralf Brinkmann,
A Problem of a Displacement Calculation of Tissue Surface in Non-Contact Photoacoustic Tomography, Naukovi Visti NTUU KPI , no. 2, pp. 58-64, 2017.
DOI:10.20535/1810-0546.2017.2.98021
Datei: 1810-0546.2017.2.98021
Bibtex: BibTeX
@article{Verbytskyi2017,
   author = {Verbytskyi, Ievgen and Münter, Michael and Buj, Christian and Brinkmann, Ralf},
   title = {A Problem of a Displacement Calculation of Tissue Surface in Non-Contact Photoacoustic Tomography},
   journal = {Naukovi Visti NTUU KPI},
   number = {2},
   pages = {58-64},
   ISSN = {2519-8890},
   url = {http://dx.doi.org/10.20535/1810-0546.2017.2.98021},
   year = {2017},
   type = {Journal Article}
}
Tom Pfeiffer, Wolfgang Draxinger, Wolfgang Wieser, Thomas Klein, Markus Petermann, and Robert Huber,
Analysis of FDML lasers with meter range coherence, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 2017. pp. 100531T.
DOI:10.1117/12.2254792
Bibtex: BibTeX
@inproceedings{10.1117/12.2254792,
author = {Tom Pfeiffer and Wolfgang Draxinger and Wolfgang Wieser and Thomas Klein and Markus Petermann and Robert Huber},
title = {{Analysis of FDML lasers with meter range coherence}},
volume = {10053},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI},
editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {100531T},
abstract = {FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high
speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable
vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively
high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely
well dispersion compensated Fourier Domain Mode Locked (FDML) laser, running at 3.2 MHz sweep rate and 120 nm
spectral bandwidth. We demonstrate that this laser offers meter range coherence and enables volumetric long range OCT
of moving objects.},
keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT},
year = {2017},
doi = {10.1117/12.2254792},
URL = {https://doi.org/10.1117/12.2254792}
}
R Bliedtner, and Amelink A,
Real Time Speckle Monitoring to Control Retinal Photocoagulation, in Proc. SPIE , 2017. pp. 1041308-1-7.
Datei: 12.2287815
Bibtex: BibTeX
@inproceedings{Bliedtner2017,
   author = {Bliedtner, K; Seifert, E; Brinkmann, R and  Amelink A},
   title = {Real Time Speckle Monitoring to Control Retinal Photocoagulation},
   booktitle = {Proc. SPIE},
   
   pages = {1041308-1-7},
  
url = { https://doi.org/10.1117/12.2287815},
Year = { 2017}
}

2017

Y Strauch, and H P Urbach,
Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)., .... SPIE, 2017 .
Datei: 12.2252854
Bibtex: BibTeX
@book{Strauch2017-3,
   author = {Strauch, M;Konijnenberg, S;Shao, Y and Urbach, H P},
   title = {Wavefront shaping with an electrowetting liquid lens using surface harmonics (Conference Presentation)},
   publisher = {SPIE},
   volume = {10073},
   series = {SPIE BiOS},
   url = {https://doi.org/10.1117/12.2252854},
   year = { 2017 },
   type = {Book}
}

2017

G. Kretschmer,
Imaging of Wound Closure of Small Epithelial Lesions in the Mouse Trachea, Am J Pathol , pp. 2451-2460, 2017.
DOI:10.1016/j.ajpath.2017.07.006
Bibtex: BibTeX
@article{Kretschmer2017,
   author = {Kretschmer, S; Pieper, M; Klinger, A; Hüttmann, G. and König, P.},
   title = {Imaging of Wound Closure of Small Epithelial Lesions in the Mouse Trachea},
   journal = {Am J Pathol},
   ISSN = {0002-9440},
   DOI = {10.1016/j.ajpath.2017.07.006},
 
   year = {2017},
pages = {2451-2460},
   type = {Journal Article}
}
Gereon Latus, and A Schlaefer,
An Approach for Needle Based Optical Coherence Elastography Measurements, in Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017 , Springer International Publishing, Eds. 2017. pp. 655--663.
ISBN:978-3-319-66185-8
Datei: 978-3-319-66185-8_74
Bibtex: BibTeX
@conference{Latus2017,
title = {An Approach for Needle Based Optical Coherence Elastography Measurements},
author = {Latus, S; Otte, C; Schl\"{u}ter, M; Rehra,J; Bizon, K; Schulz-Hildebrandt, H; Saathoff, T; H\"{u}ttmann, Gereon and Schlaefer, A},
editor = {Springer International Publishing},
url = {https://link.springer.com/chapter/10.1007/978-3-319-66185-8_74},
isbn = {978-3-319-66185-8},
year = {2017},
date = {2017-09-01},
booktitle = {Medical Image Computing and Computer-Assisted Intervention − MICCAI 2017},

pages = {655--663},
organization = {Springer},
abstract = {© Springer International Publishing AG 2017. 
While navigation and interventional guidance are typically based on image data, the images do not necessarily reflect mechanical tissue properties. Optical coherence elastography (OCE) presents a modality with high sensitivity and very high spatial and temporal resolution. However, OCE has a limited field of view of only 2\textendash5 mm depth. We present a side-facing needle probe to image externally induced shear waves from within soft tissue. A first method of quantitative needle-based OCE is provided. Using a time of flight setup, we establish the shear wave velocity and estimate the tissue elasticity. For comparison, an external scan head is used for imaging. Results for four different phantoms indicate a good agreement between the shear wave velocities estimated from the needle probe at different depths and the scan head. The velocities ranging from 0.9\textendash3.4 m/s agree with the expected values, illustrating that tissue elasticity estimates from within needle probes are feasible.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
G M Rudolf, C A Curcio, Martin Rudolf, Armin Mir Mohi Sefat, Yoko Miura, Aysegül Tura, Walter Raasch, Mahdy Ranjbar, Salvatore Grisanti, Zouhair Aherrahrou, Anna Wagner, Jeffrey D Messinger, G M Anantharamaiah, and Christine A Curcio,
ApoA-I Mimetic Peptide 4F Reduces Age-Related Lipid Deposition in Murine Bruch's Membrane and Causes Its Structural Remodeling, Curr Eye Res , pp. 1-12, 2017.
DOI:10.1080/02713683.2017.1370118
Bibtex: BibTeX
@article{Miura2017,
   author = {Rudolf, M; Mir Mohi Sefat, A; Miura, Y; Tura, A; Raasch, W; Ranjbar, M; Grisanti, S; Aherrahrou, Z; Wagner, A; Messinger, J D; Garber, D W; Anantharamaiah, G M and Curcio, C A},
   title = {ApoA-I Mimetic Peptide 4F Reduces Age-Related Lipid Deposition in Murine Bruch's Membrane and Causes Its Structural Remodeling},
   journal = {Curr Eye Res},
   pages = {1-12},
   ISSN = {0271-3683},
   DOI = {10.1080/02713683.2017.1370118},
   year = {2017},
   type = {Journal Article},

}
Birgit Lange, Dieter Jocham, Ralf Brinkmann, and Jens Cordes,
Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: Clinical proof of concept study, Lasers in Surgery and Medicine , vol. 49, no. 4, pp. 361-365, 2017.
DOI:10.1002/lsm.22611
Bibtex: BibTeX
@article{Lange2017,
   author = {Lange, Birgit and Jocham, Dieter and Brinkmann, Ralf and Cordes, Jens},
   title = {Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: Clinical proof of concept study},
   journal = {Lasers in Surgery and Medicine},
   volume = {49},
   number = {4},
   pages = {361-365},
   ISSN = {1096-9101},
   DOI = {10.1002/lsm.22611},
   year = {2017},
   type = {Journal Article}
}
Matthias Eibl, Sebastian Karpf, Daniel Weng, Hubertus Hakert, Tom Pfeiffer, Jan Philip Kolb, and Robert Huber,
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate, Biomed. Opt. Express , vol. 8, no. 7, pp. 3132-3142, 2017. Optica Publishing Group.
DOI:10.1364/BOE.8.003132
Bibtex: BibTeX
@article{Eibl:17,
author = {Matthias Eibl and Sebastian Karpf and Daniel Weng and Hubertus Hakert and Tom Pfeiffer and Jan Philip Kolb and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Fiber optics imaging; Nonlinear optics, fibers; Lasers, fiber; Lifetime-based sensing; Fluorescence microscopy; Nonlinear microscopy; Fourier domain mode locking; Image quality; Imaging techniques; Laser sources; Pulsed fiber lasers; Three dimensional sensing},
number = {7},
pages = {3132--3142},
publisher = {Optica Publishing Group},
title = {Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate},
volume = {8},
month = {Jul},
year = {2017},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-8-7-3132},
doi = {10.1364/BOE.8.003132},
abstract = {Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.},
}
R Seiler, and I E Kochevar,
Interface bonding with corneal crosslinking (CXL) after LASIK ex vivo, Investig Ophthal and Vis Scie , pp. 6292-6298, 2017.
DOI:10.1167/iovs.17-22426
Bibtex: BibTeX
@article{Seiler2017,
   author = {Seiler, T G; Engler, M; Beck, E; Birngruber, R and Kochevar, I E},
   title = {Interface bonding with corneal crosslinking (CXL) after LASIK ex vivo},
   journal = {Investig Ophthal and Vis Scie},
   
   pages = {6292-6298},
   DOI = {10.1167/iovs.17-22426},
   
   year = {2017},
   type = {Journal Article}
}
R Yao,
Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation, International Journal of Nanomedicine , pp. 5659-5672, 2017.
DOI:10.2147/IJN.S140620
Bibtex: BibTeX
@article{Yao2017,
   author = {Yao, C; Rudnitzki, F; Hüttmann, G; Zhang, Zand Rahmanzadeh, R},
   title = {Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation},
journal = {International Journal of Nanomedicine},
  
   pages = {5659-5672},
   DOI = {10.2147/IJN.S140620},
   year = {2017},
   type = {Journal Article}
}
Timo Kepp, Stefan Koinzer, Heinz Handels, and Ralf Brinkmann,
Registrierung von nicht sichtbaren Laserbehandlungsarealen der Retina in Live-Aufnahmen des Fundus, in Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg , Maier-Hein, geb Fritzsche Klaus Hermann and Deserno, geb Lehmann Thomas Martin and Handels, Heinz and Tolxdorff, Thomas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 331-336.
ISBN:978-3-662-54345-0
Datei: 978-3-662-54345-0_74
Bibtex: BibTeX
@inbook{Kepp2017,
   author = {Kepp, Timo and Koinzer, Stefan and Handels, Heinz and Brinkmann, Ralf},
   title = {Registrierung von nicht sichtbaren Laserbehandlungsarealen der Retina in Live-Aufnahmen des Fundus},
   booktitle = {Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg},
   editor = {Maier-Hein, geb Fritzsche Klaus Hermann and Deserno, geb Lehmann Thomas Martin and Handels, Heinz and Tolxdorff, Thomas},
   publisher = {Springer Berlin Heidelberg},
   address = {Berlin, Heidelberg},
   pages = {331-336},
   ISBN = {978-3-662-54345-0},
   url = {http://dx.doi.org/10.1007/978-3-662-54345-0_74},
   year = {2017},
   type = {Book Section}
}
Clara Pfäffle, Hendrik Spahr, Dierck Hillmann, Helge Sudkamp, Gesa Franke, and Peter Koch,
Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited], Biomedical Optics Express , vol. 8, no. 3, pp. 1499-1511, 2017.
Datei: abstract.cfm
Bibtex: BibTeX
@article{Pfäffle2017,
   author = {Pfäffle, Clara and Spahr, Hendrik and Hillmann, Dierck and Sudkamp, Helge and Franke, Gesa and Koch, Peter and Hüttmann, Gereon},
   title = {Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]},
   journal = {Biomedical Optics Express},
   volume = {8},
   number = {3},
   pages = {1499-1511},
   keywords = {Image reconstruction-restoration
Optical coherence tomography},
   url = {http://www.osapublishing.org/boe/abstract.cfm?URI=boe-8-3-1499},
   year = {2017},
   type = {Journal Article}
}
Gianni Borghesan, Mouloud Ourak, Eva Lankenau, Richard Neffin, Peter Koch, Hinnerk Schulz-Hildebrandt, Koen Willekens, Peter Stalmans, Dominiek Reynaerts, and Emmanuel Vander Poorten,
Probabilistic Principal Component Analysis and Particle Filtering for real-time retina detection from a single-fiber OCT, in Proceedings of the 7th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery , 2017.
Bibtex: BibTeX
@conference{Borghesan2017,
title = {Probabilistic Principal Component Analysis and Particle Filtering for real-time retina detection from a single-fiber OCT},
author = {Gianni Borghesan and Mouloud Ourak and Eva Lankenau and Richard Neffin and Peter Koch and Hinnerk Schulz-Hildebrandt and Koen Willekens and Peter Stalmans and Dominiek Reynaerts and Emmanuel Vander Poorten},
year = {2017},
date = {2017-06-02},
booktitle = {Proceedings of the 7th Joint Workshop on New Technologies for Computer/Robot Assisted Surgery},
abstract = {Vitreo-retinal surgery concerns a set of particularly demanding micro-surgical interventions that take place at the back of the eye. Examples of such procedures are retinal vein cannulation (where the surgeon aims to insert a needle in a vein of the size of human hairs) and epiretinal membrane peeling (where a detached membrane must be removed from the retina). As severe retinal damage can be caused by undesired collisions, good instrument to retina distance perception would be very useful. We propose to use an OCT-fiber instrumented tool, and purposefully designed algorithms to interpret the measurements and extract a reliable real-time distance estimate. This abstract describes the progress that was made and includes a test conducted with a robotic platform on a synthetic eye mockup.},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}

Power-controlled temperature guided retinal laser therapy, J Biomed Opt , pp. 1-11, 2017.
DOI:10.1117/1.jbo.22.11.118001
Bibtex: BibTeX
@article{Baade2017,
   author = {Baade, A; von der Burchard, C; Lawin, M; Koinzer, S; Schmarbeck, B; Schlott, K; Miura, Y; Roider, J; Birngruber, R and Brinkmann, R},
   title = {Power-controlled temperature guided retinal laser therapy},
   journal = {J Biomed Opt},
   
   pages = {1-11},
   ISSN = {1083-3668},
   DOI = {10.1117/1.jbo.22.11.118001},
   year = {2017},
   type = {Journal Article}
}
G Hillmann,
Off-axis reference beam for full-field swept-source OCT and holoscopy, Opt Expr , pp. 27770-27784, 2017.
DOI:10.1364/OE.25.027770
Bibtex: BibTeX
@article{Hillmann2017,
   author = {Hillmann, D; Spahr, H; Sudkamp, H; Hain, C; Hinkel, L; Franke, G and Hüttmann, G},
   title = {Off-axis reference beam for full-field swept-source OCT and holoscopy},
   journal = {Opt Expr},
   
   pages = {27770-27784},
   DOI = {10.1364/OE.25.027770},
   year = {2017},
   type = {Journal Article}
}
G Buj,
Noncontact holographic detection for photoacoustic tomography, J Biomed Opt , pp. 1-14, 2017.
DOI:10.1117/1.jbo.22.10.106007
Bibtex: BibTeX
@article{Buj2017,
   author = {Buj, C; Münter, M; Schmarbeck, B; Horstmann, J; Hüttmann, G and Brinkmann, R},
   title = {Noncontact holographic detection for photoacoustic tomography},
   journal = {J Biomed Opt},
   
   pages = {1-14},
   DOI = {10.1117/1.jbo.22.10.106007},
   year = {2017},
   type = {Journal Article}
}


P Horstmann, and C Cursiefen,
Label-Free In Vivo Imaging of Corneal Lymphatic Vessels Using Microscopic Optical Coherence Tomography, Investig Ophthal & Vis Scie , pp. 5880-5886, 2017.
DOI:10.1167/iovs.17-22286
ISBN:1552-5783
Bibtex: BibTeX
@article{Horstmann2017,
title = {Label-Free In Vivo Imaging of Corneal Lymphatic Vessels Using Microscopic Optical Coherence Tomography},
author = {Horstmann, J; Schulz-Hildebrandt, H; Bock, F; Siebelmann, S; Lankenau, E; H\"{u}ttmann, G; Steven, P and  Cursiefen, C},
editor = {The Association Research for in Vision and Ophthalmology},
doi = {10.1167/iovs.17-22286},
isbn = {1552-5783},
year = {2017},
date = {2017-12-25},
journal = { Investig Ophthal & Vis Scie},

pages = {5880-5886},
abstract = {Purpose: Corneal neovascularization, in particular lymphangiogenesis, is a limiting factor in corneal transplant survival. Novel treatment approaches focus on (selective) inhibition and regression of lymphatic vessels. Imaging clinically invisible corneal lymphatic vessels is a prerequisite for these strategies. Using a murine model, this study investigates whether corneal lymphatic vessels can be imaged using microscopic optical coherence tomography (mOCT). 

Methods: Corneal neovascularization was induced by intrastromal placement of 11.0 nylon sutures in one eye of BALB/c mice. After 2 weeks, cross-sectional images and volumes of the corneas with a 0.5 mm lateral and axial field of view were acquired using a custom-built mOCT system enabling a resolution of 1 μm at a B-scan rate of 165/s. Three of the six animals received an additional intrastromal injection of India ink 24 hours before the measurement to stain the corneal lymphatic system in vivo. Immunohistochemistry using CD31 and LYVE-1 was used to validate the mOCT findings. 

Results: Using mOCT, lymphatic vessels were visible as dark vessel-like structures with the lumen lacking a hyperreflective wall and mostly lacking cells. However, individual, slowly moving particles, which most likely are immune cells, occasionally could be observed inside the lumen. In lymphatic vessels of ink-stained corneas, hyperreflection and shadowing underneath was observed. Ink-filled lymphatic vessels were colocalized in consecutive corneal flat mounts of the same specimen. 

Conclusions: Corneal lymphatic vessels can be imaged using mOCT. This novel approach opens new options for noninvasive clinical imaging of corneal lymphatic vessels for diagnostic and therapeutic indications.},
keywords = {OCM},
pubstate = {published},
tppubtype = {article}
}
Jan Tode, Elisabeth Richert, Claus von der Burchard, Stefan Koinzer, Alexa Klettner, Ralf Brinkmann, and Johann Roider,
Schonende retinale Lasertherapien als Behandlungsoption der trockenen AMD, Spitzenforschung in der Ophthalmologie , pp. 170-173, 2017.
Datei: DOG_Sonderband_WEB-min.pdf
Bibtex: BibTeX
@article{Brinkmann2017,
   author = {Tode, J;Richert, E;von der Burchard, C;Koinzer, S;Klettner, A;Brinkmann, R and Roider, J},
   title = {Schonende retinale Lasertherapien als Behandlungsoption der trockenen AMD },
   journal = {Spitzenforschung in der Ophthalmologie},
   pages = {170-173},
   ISSN = {1861-4620},
   url = {https://www.dog.org/wp-content/uploads/2009/12/DOG_Sonderband_WEB-min.pdf#page=1&zoom=auto,-57,877},
   year = {2017},
   type = {Journal Article}
}

2016

Sebastian Karpf, Matthias Eibl, Benjamin Sauer, Fred Reinholz, Gereon Hüttmann, and Robert Huber,
Two-photon microscopy using fiber-based nanosecond excitation, Biomed. Opt. Express , vol. 7, no. 7, pp. 2432-2440, 07 2016. Optica Publishing Group.
DOI:10.1364/BOE.7.002432
Bibtex: BibTeX
@article{Karpf:16,
author = {Sebastian Karpf and Matthias Eibl and Benjamin Sauer and Fred Reinholz and Gereon H\"{u}ttmann and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Fiber optics imaging; Nonlinear optics, fibers; Lasers, fiber; Fluorescence microscopy; Nonlinear microscopy; Femtosecond pulses; In vivo imaging; Laser sources; Nanosecond pulses; Optical systems; Ultrafast lasers},
number = {7},
pages = {2432--2440},
publisher = {Optica Publishing Group},
title = {Two-photon microscopy using fiber-based nanosecond excitation},
volume = {7},
month = {Jul},
year = {2016},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-7-7-2432},
doi = {10.1364/BOE.7.002432},
abstract = {Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.},
}
Robert Huber, Lars Dworak, Jacques E. Moser, Michael Grätzel, and Josef Wachtveitl,
Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation, The Journal of Physical Chemistry C , vol. 120, no. 16, pp. 8534-8539, 04 2016.
DOI:10.1021/acs.jpcc.6b02012
Bibtex: BibTeX
@article{doi:10.1021/acs.jpcc.6b02012,
author = {Huber, Robert and Dworak, Lars and Moser, Jacques E. and Grätzel, Michael and Wachtveitl, Josef},
title = {Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation},
journal = {The Journal of Physical Chemistry C},
volume = {120},
number = {16},
pages = {8534-8539},
year = {2016},
doi = {10.1021/acs.jpcc.6b02012},

URL = { 
        https://doi.org/10.1021/acs.jpcc.6b02012
    
},
eprint = { 
        https://doi.org/10.1021/acs.jpcc.6b02012
    
}
,
    abstract = { Wave packet propagation succeeding electron transfer (ET) from alizarin dye molecules into the nanocrystalline TiO2 semiconductor has been studied by ultrafast transient absorption spectroscopy. Because of the ultrafast time scale of the ET reaction of about 6 fs, the system shows substantial differences to molecular ET systems. We show that the ET process is not mediated by molecular vibrations, and therefore classical ET theories lose their applicability. Here the ET reaction itself prepares a vibrational wave packet and not the electromagnetic excitation by the laser pulse. Furthermore, the generation of phonons during polaron formation in the TiO2 lattice is observed in real time for this system. The presented investigations enable an unambiguous assignment of the involved photoinduced mechanisms and can contribute to a corresponding extension of molecular ET theories to ultrafast ET systems like alizarin/TiO2. }
}
H P Urbach,
Surface harmonics on liquid lenses, in 2016 IEEE Photonics Conference (IPC) , 2016. pp. 248-249.
DOI:10.1109/IPCon.2016.7831063
Bibtex: BibTeX
@INPROCEEDINGS{Strauch2017,
author={Strauch, M and Urbach, H P},
booktitle={2016 IEEE Photonics Conference (IPC)},
title={Surface harmonics on liquid lenses},
year={2016},

pages={248-249},
keywords={lenses;optical harmonic generation;optical tuning;oscillations;surface harmonics;liquid lenses;tunability;nonspherical surfaces;surface oscillations;Lenses;Liquids;Surface waves;Optical surface waves;Harmonic analysis;Shape;Optical switches},
doi={10.1109/IPCon.2016.7831063},
ISSN={},
month={Oct},}
S. Kang, Y. G. Park, J. R. Kim, E. Seifert, and Y. J. Roh,
Selective Retina Therapy in Patients With Chronic Central Serous Chorioretinopathy: A Pilot Study, Medicine (Baltimore) , vol. 95, no. 3, pp. e2524, 2016.
DOI:10.1097/md.0000000000002524
Bibtex: BibTeX
@article{Kang1016,
   author = {Kang, S. and Park, Y. G. and Kim, J. R. and Seifert, E. and Theisen-Kunde, D and Brinkman, R and Roh, Y. J.},
   title = {Selective Retina Therapy in Patients With Chronic Central Serous Chorioretinopathy: A Pilot Study},
   journal = {Medicine (Baltimore)},
   volume = {95},
   number = {3},
   pages = {e2524},
   note = {1536-5964
Kang, Seungbum
Park, Young Gun
Kim, Jae Ryun
Seifert, Eric
Dirk, Theisen-Kunde
Ralf, Brinkmann
Roh, Young Jung
Journal Article
United States
Medicine (Baltimore). 2016 Jan;95(3):e2524. doi: 10.1097/MD.0000000000002524.},
   abstract = {We evaluated visual outcomes, changes of maximum macular thickness (MMT) and subretinal fluid (SRF), and safety in patients with chronic central serous chorioretinopathy (CSC) after treatment with selective retina therapy (SRT). Retrospective cohort study of patients with chronic CSC presenting to a university-based hospital from January 2014 through January 2015 was conducted. A total of 12 eyes of 12 patients with chronic CSC lasting for at least 3 months was recruited. The follow-up period ranged from 3 to 12 months. Following evaluation of test spots at temporal arcades, SRT (Q-switched neodymium-doped yttrium lithium fluoride [Nd:YLF] laser; wavelength, 527 nm, pulse duration, 1.7 microsececond) was applied to the surrounding areas of leakage observed on fluorescein angiogram and/or pigment epithelial detachment (PED). Changes in best-correct visual acuity (BCVA), MMT, and SRF and macular sensitivity (MS) by microperimetry (MP) were evaluated. Eyes received treatment in a mean of 3.83 spots at the pulse energy of 65 to 90 muJ. Mean BCVA (logMAR) improved from 0.23 +/- 0.12 at baseline to 0.14 +/- 0.13 at 3 months. MMT decreased from 341.4 +/- 85.5 mum at baseline to 236.0 +/- 57.9 mum at 3 months. SRF completely resolved in 75% (9 eyes) at 3 months. Large PEDs (2 eyes) were flattened at 3 months. Retreatment was performed in 4 eyes. MP showed no evidence of scotoma around SRT-treated lesions. SRT treatment targeting the surrounding area of leakage point showed favorable visual and structural outcomes in chronic CSC patients without the risk of scotoma.},
   ISSN = {0025-7974},
   DOI = {10.1097/md.0000000000002524},
   year = {2016},
   type = {Journal Article}
}
Y. G. Park, J. R. Kim, S. Kang, E. Seifert, and Y. J. Roh,
Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients, Graefes Arch Clin Exp Ophthalmol , 2016.
DOI:10.1007/s00417-015-3262-1
Bibtex: BibTeX
@article{Park2016,
   author = {Park, Y. G. and Kim, J. R. and Kang, S. and Seifert, E. and Theisen-Kunde, D. and Brinkmann, R. and Roh, Y. J.},
   title = {Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients},
   journal = {Graefes Arch Clin Exp Ophthalmol},
   note = {1435-702x
Park, Young Gun
Kim, Jae Ryun
Kang, Seungbum
Seifert, Eric
Theisen-Kunde, Dirk
Brinkmann, Ralf
Roh, Young-Jung
Journal article
Graefes Arch Clin Exp Ophthalmol. 2016 Jan 23.},
   abstract = {PURPOSE: Selective retina therapy (SRT) stimulates retinal pigment epithelium (RPE) cell migration and proliferation into irradiated areas. The objective of this study was to evaluate the efficacy and safety of SRT in Korean patients with clinically significant diabetic macular edema (DME). METHODS: Prospective non-randomized interventional case series study. Twenty-three eyes of 21 patients with clinically significant DME were treated with SRT and followed for 6 months. Patients underwent an evaluation of best corrected visual acuity (BCVA) in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. Microperimetry was employed to measure macular sensitivity within the central 10 degrees field, and the central macular thickness (CMT) and maximum macular thickness (MMT) were measured. RESULTS: An improvement in BCVA of one to two ETDRS lines was observed in 41.2 % of patients and an improvement of greater than two lines in 29.4 %. Although there was no significant change in CMT (P > 0.05), MMT decreased from 465.8 +/- 87.4 mum to 434.3 +/- 83.9 mum (P = 0.006), and mean macular sensitivity increased from 20.8 +/- 3.4dB to 22.5 +/- 3.5dB (P = 0.02). CONCLUSIONS: The gains in BCVA and improvement in macular sensitivity demonstrated that SRT may be used as an effective and safe treatment modality in Korean patients with clinically significant DME.},
   keywords = {Diabetic macular edema
Dosimetry
Microperimetry
Retinal pigment epithelium
Selective retina therapy},
   ISSN = {0721-832x},
   DOI = {10.1007/s00417-015-3262-1},
   year = {2016},
   type = {Journal Article}
}
J. Kasper, N. Traulsen, and M. Mall,
Towards automated evaluation of mucus transport measured by microscopic OCT (mOCT) during hypertonic saline treatment of Cystic Fibrosis, Pneumologie , vol. 70, no. 07, pp. 1-48, 2016.
DOI:10.1055/s-0036-1584651
Bibtex: BibTeX
@article{Schulz-Hildebrandt2016,
   author = {Schulz-Hildebrandt, H. and Pieper, M. and Kasper, J. and Traulsen, N. and Mall, M. and König, P. and Hüttmann, G.},
   title = {Towards automated evaluation of mucus transport measured by microscopic OCT (mOCT) during hypertonic saline treatment of Cystic Fibrosis},
   journal = {Pneumologie},
   volume = {70},
   number = {07},
   pages = {1-48},
   ISSN = {0934-8387},
   DOI = {10.1055/s-0036-1584651},
   year = {2016},
   type = {Journal Article}
}
Mario Pieper, and Hinnerk Schulz-Hildebrandt,
Imaging of mucus clearance in the airways of living spontaneously breathing mice by optical coherence microscopy (Conference Presentation), 2016. pp. 969116-969116-1.
Datei: 12.2209054
Bibtex: BibTeX
@inproceedings{Pieper2016,
   author = {Pieper, Mario and Schulz-Hildebrandt, Hinnerk and Hüttmann, Gereon and König, Peter},
   title = {Imaging of mucus clearance in the airways of living spontaneously breathing mice by optical coherence microscopy (Conference Presentation)},
   volume = {9691},
   pages = {969116-969116-1},
year = { 2016},
   note = {10.1117/12.2209054},
   abstract = {Mucus transport is essential to remove inhaled particles and pathogens from the lung. Impaired removal of mucus often results in worsening of lung diseases. To understand the mechanisms of mucus transport and to monitor the impact of therapeutic strategies, it is essential to visualize airways and mucus in living animals without disturbing transport processes by intubation or surgically opening the airways. We developed a custom-built optical coherence microscope (OCM) providing a lateral and axial resolution of approximately 1.5 µm with a field of view of 2 mm at up to 150 images/s. Images of the intact trachea and its mucus transport were recorded in anesthetized spontaneously breathing mice. NaCl solution (0.9% and 7%) or Lipopolysaccharide were applied intranasally. OCM resolved detailed structure of the trachea and enabled measuring the airway surface liquid (ASL) thickness through the tracheal wall. Without stimulation, the amount of ASL was only a few µm above the epithelium and remained constant. After intranasal application of 30 µl saline at different concentrations, an early fast cough-like fluid removal with velocities higher than 1 mm/s was observed that removed a high amount of liquid. The ASL thickness increased transiently and quickly returned to levels before stimulation. In contrast to saline, application of Lipopolysaccharide induced substantial mucus release and an additional slow mucus transport by ciliary beating (around 100 µm/s) towards the larynx was observed. In conclusion, OCM is appropriate unique tool to study mechanisms of mucus transport in the airways and effects of therapeutic interventions in living animals.},
   url = {http://dx.doi.org/10.1117/12.2209054},
   type = {Conference Proceedings}
}
Norbert Linz, Sebastian Freidank, Xiao-Xuan Liang, and Alfred Vogel,
Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery, American Physical Society,Phys. Rev. B , vol. 94, no. 2, pp. 1-19, 2016.
Datei: PhysRevB.94.024113
Bibtex: BibTeX
@article{Linz2016,
   author = {Linz, Norbert and Freidank, Sebastian and Liang, Xiao-Xuan and Vogel, Alfred},
   title = {Wavelength dependence of femtosecond laser-induced breakdown in water and implications for laser surgery},
   journal = {American Physical Society,Phys. Rev. B},
   volume = { 94},
   number = {2},
   pages = {1-19},
   url = {http://link.aps.org/doi/10.1103/PhysRevB.94.024113},
   year = {2016},
   type = {Journal Article}
}