2023

Marie Klufts, A. Martínez Jiménez, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Adrian Bradu, Adrian Podoleanu, and Robert Huber,
828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser, Biomed. Opt. Express , vol. 14, no. 12, pp. 6493-6508, Nov. 2023. Optica Publishing Group.
DOI:10.1364/BOE.504302
Bibtex: BibTeX
@article{Klufts:23,
author = {Marie Klufts and Alejandro Martinez Jimenez and Simon Lotz and Muhammad Asim Bashir and Tom Pfeiffer and Alexander Mlynek and Wolfgang Wieser and Alexander Chamorovskiy and Adrian Bradu and Adrian Podoleanu and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Analog to digital converters; Laser beams; Laser imaging; Laser modes; Point spread function; Vertical cavity surface emitting lasers},
number = {12},
pages = {6493--6508},
publisher = {Optica Publishing Group},
title = {828 kHz retinal imaging with an 840\&\#x2005;nm Fourier domain mode locked laser},
volume = {14},
month = {Dec},
year = {2023},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-14-12-6493},
abstract = {This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.},
}
Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321P.
DOI:10.1117/12.2670907
Datei: 12.2670907
Bibtex: BibTeX
@inproceedings{10.1117/12.2670907,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126321P},
keywords = {Brain Tumor, OCT, Optical Coherence Tomography, Prior Network, Glioblastoma Multiforme, Neural Network, Classification},
year = {2023},
doi = {10.1117/12.2670907},
URL = {https://doi.org/10.1117/12.2670907}
}
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schuetz, Nicolas Detrez, Paul Strenge, Maximilian Rixius, Veit Danicke, Wolfgang Wieser, Jessica Kren, Patrick Kuppler, Sonja Spar-Hess, Matteo M. Bonsanto, Ralf Brinkmann, and Robert Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 082023. pp. 126270W.
DOI:10.1117/12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
abstract = {Microscope integrated realtime 4D MHz-OCT operating at high scanning densities are capable of capturing additional visual contrast resolving depth and tissue. Even within a plain C-scan en-face projection structures are recognizable, that are not visible in a white light camera image. With advanced post processing methods, such as absorbtion coefficient mapping, and morphological classifiers more information is extraced. Presentation to the user in an intuitive way poses practical challenges that go beyond the implementation of a mere overlay display. We present our microscope integrated high speed 4D OCT imaging system, its clinical study use for in-vivo brain tissue imaging, and user feedback on the presentation methods we developed.},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}
Sazgar Burhan, Nicolas Detrez, Madita Göb, Matteo Mario Bonsanto, Ralf Brinkmann, and Robert Huber,
Advanced FFT-based contrast approach for MHz optical coherence elastography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 1263215.
DOI:10.1117/12.2670957
Bibtex: BibTeX
@inproceedings{10.1117/12.2670957,
author = {Sazgar Burhan and Nicolas Detrez and Madita G{\"o}b and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
title = {{Advanced FFT-based contrast approach for MHz optical coherence elastography}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1263215},
abstract = {Optical coherence elastography represents mechanical characteristics of biological tissue in so-called mechanical contrast maps. In addition to the standard intensity image, the contrast map illustrates numerous mechanical tissue features that would otherwise be undetectable. This is of great interest as abnormal physiological changes influence the mechanical behavior of the tissue. We demonstrate an advanced mechanical contrast approach based on the phase signal of our 3.2 MHz optical coherence tomography system. The robustness and performance of this contrast approach is evaluated and discussed based on preliminary results. },
keywords = {Optical Coherence Tomography, OCT, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, OCE, Phase-sensitive OCT, Biomechanics},
year = {2023},
doi = {10.1117/12.2670957},
URL = {https://doi.org/10.1117/12.2670957}
}
Madita Göb, Simon Lotz, Linh Ha-Wissel, Sazgar Burhan, Sven Böttger, Floris Ernst, Jennifer Hundt, and Robert Huber,
Advances in large area robotically assisted OCT (LARA-OCT): towards drive-by continuous motion imaging, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321N.
DOI:10.1117/12.2670950
Bibtex: BibTeX
@inproceedings{10.1117/12.2670950,
author = {Madita G{\"o}b and Simon Lotz and Linh Ha-Wissel and Sazgar Burhan and Sven B{\"o}ttger and Floris Ernst and Jennifer Hundt and Robert Huber},
title = {{Advances in large area robotically assisted OCT (LARA-OCT): towards drive-by continuous motion imaging}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126321N},
abstract = {Optical coherence tomography is a powerful imaging technique to visualize and localize depth-dependent tissue structure to differentiate between healthy and pathological conditions. However, conventional OCT systems are only capable of detecting small areas. To overcome this limitation, we have developed a large area robotically assisted OCT (LARA-OCT) system for automatic acquisition of large OCT images. Using mosaic pattern acquisition and subsequent stitching, we previously demonstrated initial in vivo OCT skin images beyond 10 cm². To improve acquisition speed and reduce dead times, we here demonstrate and analyze LARA-OCT with a new drive-by continuous motion imaging protocol.},
keywords = {Optical Coherence Tomography, Fourier Domain Mode Locking, Robotically Assisted Imaging Systems, Three-dimensional image acquisition, Large Area Scanning, Skin Imaging, OCT, FDML},
year = {2023},
doi = {10.1117/12.2670950},
URL = {https://doi.org/10.1117/12.2670950}
}
Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
Four-Wave Mixing Fast Wavelength Sweeping FDML Laser with kW Peak Power at 900 nm and 1300 nm, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232141
Bibtex: BibTeX
@INPROCEEDINGS{10232141,
  author={Lamminger, Philipp and Hakert, Hubertus and Lotz, Simon and Kolb, Jan Philip and Kutscher, Tonio and Karpf, Sebastian and Huber, Robert},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Four-Wave Mixing Fast Wavelength Sweeping FDML Laser with kW Peak Power at 900 nm and 1300 nm}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232141}}
Simon Lotz, Madita Göb, Wolfgang Draxinger, Anneli Dick, and Robert Huber,
13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10231419
Bibtex: BibTeX
@INPROCEEDINGS{10231419,
  author={Lotz, Simon and Göb, Madita and Draxinger, Wolfgang and Dick, Anneli and Huber, Robert},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10231419}}
Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Vladimir Shidlovski, Adrian Podoleanu, and Robert Huber,
Dual Amplification 850 nm FDML Laser, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232019
Bibtex: BibTeX
@INPROCEEDINGS{10232019,
  author={Klufts, M. and Lotz, S. and Bashir, M. A. and Pfeiffer, T. and Mlynek, A. and Wieser, W. and Chamorovskiy, A. and Shidlovski, V. and Podoleanu, A. and Huber, R.},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Dual Amplification 850 nm FDML Laser}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232019}}
Paula Enzian, and Ramtin Rahmanzadeh,
Photochemical Internalization with Fimaporfin: Enhanced Bleomycin Treatment for Head and Neck Cancer, Pharmaceutics , vol. 15, no. 8, 07 2023.
DOI:10.3390/pharmaceutics15082040
Datei: 2040
Bibtex: BibTeX
@Article{pharmaceutics15082040,
AUTHOR = {Enzian, Paula and Rahmanzadeh, Ramtin},
TITLE = {Photochemical Internalization with Fimaporfin: Enhanced Bleomycin Treatment for Head and Neck Cancer},
JOURNAL = {Pharmaceutics},
VOLUME = {15},
YEAR = {2023},
NUMBER = {8},
ARTICLE-NUMBER = {2040},
URL = {https://www.mdpi.com/1999-4923/15/8/2040},
ISSN = {1999-4923},
ABSTRACT = {Head and neck squamous cell carcinoma (HNSCC) still represents the world’s sixth most common tumor entity, with increasing incidence. The reachability of light makes HNSCC suitable for light-based therapies such as Photochemical Internalization (PCI). The drug Bleomycin is cytotoxic and used as an anti-tumor medication. Since Bleomycin is endocytosed as a relatively large molecule, part of it is degraded in lysosomes before reaching its intracellular target. The goal of our study was to improve the intracellular availability of Bleomycin with PCI. We investigate the intracellular delivery of Bleomycin after PCI with the photosensitizer Fimaporfin. A systematic variation of Bleomycin and Fimaporfin concentrations and light irradiation led to the pronounced cell death of HNSCC cells. After optimization, the same level of tumor cell death of 75% was reached with a 20-fold lower Bleomycin concentration. This would allow treatment of HNSCC with high local tumor cell death and reduce the side effects of Bleomycin, e.g., lung fibrosis, at the same time. This demonstrates the increased efficacy of the anti-tumor medication Bleomycin in combination with PCI.},
DOI = {10.3390/pharmaceutics15082040}
}
Svenja Sonntag, Marie Kreikenbohm, Giulia Böhmerle, Jessica Stagge, Salvatore Grisanti, and Yoko Miura,
Impact of cigarette smoking on fluorescence lifetime of ocular fundus, Scientific Reports , vol. 13, no. 1, pp. 11484, 07 2023.
DOI:10.1038/s41598-023-37484-4
Datei: s41598-023-37484-4
Bibtex: BibTeX
@article{RN5446,
   author = {Sonntag, Svenja Rebecca;Kreikenbohm, Marie;Böhmerle, Giulia;Stagge, Jessica;Grisanti, Salvatore and Miura, Yoko},
   title = {Impact of cigarette smoking on fluorescence lifetime of ocular fundus},
   journal = {Scientific Reports},
   volume = {13},
   number = {1},
   pages = {11484},
   ISSN = {2045-2322},
   DOI = {10.1038/s41598-023-37484-4},
   url = {https://doi.org/10.1038/s41598-023-37484-4},
   year = {2023},
   type = {Journal Article}
}
Noah Heldt, Cornelia Holzhausen, Martin Ahrens, Mario Pieper, Peter König, and Gereon Hüttmann,
Improved image quality in dynamic OCT imaging of airway and lung tissue by reduced imaging time and machine learning based data evaluation, in Abstract Book 11th DZL Annual Meeting , 11th DZL Annual Meeting, Fürstenfeldbruck, 14–16 June 2023, Deutsches Zentrum für Lungenforschung e. V Geschäftsstelle Aulweg 130 35392 Gießen: DZL, 072023. pp. 357.
Weblink: https://dzl.de/wp-content/uploads/2023/06/Abstract-Book_2023-2.pdf
Datei: Dateilink
Muhammad Asim Bashir, Simon Lotz, Marie Klufts, Christian Jirauschek, and Robert Huber,
1190 nm FDML laser: Challenges and Strategies, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232661
Bibtex: BibTeX
@INPROCEEDINGS{10232661,
  author={Bashir, M. A. and Lotz, S. and Kluftsa, M. and Jirauschek, C. and Huberab, R.},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={1190 nm FDML laser: Challenges and Strategies}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232661}}
Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm, Opt. Lett. , vol. 48, no. 14, pp. 3713-3716, 07 2023. Optica Publishing Group.
DOI:10.1364/OL.488181
Bibtex: BibTeX
@article{Lamminger:23,
author = {Philipp Lamminger and Hubertus Hakert and Simon Lotz and Jan Philip Kolb and Tonio Kutscher and Sebastian Karpf and Robert Huber},
journal = {Opt. Lett.},
keywords = {Green fluorescent protein; Laser beam combining; Laser crystals; Laser imaging; Optical amplifiers; Photonic crystal lasers},
number = {14},
pages = {3713--3716},
publisher = {Optica Publishing Group},
title = {Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm},
volume = {48},
month = {Jul},
year = {2023},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-48-14-3713},
doi = {10.1364/OL.488181},
abstract = {Four-wave mixing (FWM) enables the generation and amplification of light in spectral regions where suitable fiber gain media are unavailable. The 1300 nm and 900 nm regions are of especially high interest for time-encoded (TICO) stimulated Raman scattering microscopy and spectro-temporal laser imaging by diffracted excitation (SLIDE) two-photon microscopy. We present a new, to the best of our knowledge, FWM setup where we shift the power of a home-built fully fiber-based master oscillator power amplifier (MOPA) at 1064 nm to the 1300-nm region of a rapidly wavelength-sweeping Fourier domain mode-locked (FDML) laser in a photonic crystal fiber (PCF) creating pulses in the 900-nm region. The resulting 900-nm light can be wavelength swept over 54 nm and has up to 2.5 kW (0.2 {\textmu}J) peak power and a narrow instantaneous spectral linewidth of 70 pm. The arbitrary pulse patterns of the MOPA and the fast wavelength tuning of the FDML laser (419 kHz) allow it to rapidly tune the FWM light enabling new and faster TICO-Raman microscopy, SLIDE imaging, and other applications.},
}
Anke Leichtle, Zuzana Penxova, Thorge Kempin, David Leffers, Martin Ahrens, Peter König, Ralf Brinkmann, Gereon Hüttmann, Karl-Ludwig Bruchhage, and Hinnerk Schulz-Hildebrandt,
Dynamic Microscopic Optical Coherence Tomography as a New Diagnostic Tool for Otitis Media, Photonics , vol. 10, no. 6, 06 2023.
DOI:10.3390/photonics10060685
Datei: 685
Bibtex: BibTeX
@Article{photonics10060685,
AUTHOR = {Leichtle, Anke and Penxova, Zuzana and Kempin, Thorge and Leffers, David and Ahrens, Martin and König, Peter and Brinkmann, Ralf and Hüttmann, Gereon and Bruchhage, Karl-Ludwig and Schulz-Hildebrandt, Hinnerk},
TITLE = {Dynamic Microscopic Optical Coherence Tomography as a New Diagnostic Tool for Otitis Media},
JOURNAL = {Photonics},
VOLUME = {10},
YEAR = {2023},
NUMBER = {6},
ARTICLE-NUMBER = {685},
URL = {https://www.mdpi.com/2304-6732/10/6/685},
ISSN = {2304-6732},
ABSTRACT = {Hypothesis: Otitis media (OM) can be successfully visualized and diagnosed by dynamic microscopic optical coherence tomography (dmOCT). Background: OM is one of the most common infectious diseases and, according to the WHO, one of the leading health problems with high mortality in developing countries. Despite intensive research, the only definitive treatment of therapy-refractory OM for decades has been the surgical removal of inflamed tissue. Thereby, the intra-operative diagnosis is limited to the surgeon’s visual impression. Supportive imaging modalities have been little explored and have not found their way into clinical application. Finding imaging techniques capable of identifying inflamed tissue intraoperatively, therefore, is of significant clinical relevance. Methods: This work investigated a modified version of optical coherence tomography with a microscopic resolution (mOCT) regarding its ability to differentiate between healthy and inflamed tissue. Despite its high resolution, the differentiation of single cells with mOCT is often impossible. A new form of mOCT termed dynamic mOCT (dmOCT) achieves cellular contrast using micro-movements within cells based on their metabolism. It was used in this study to establish correlative measurements with histology. Results: Using dmOCT, images with microscopic resolution were acquired on ex vivo tissue samples of chronic otitis media and cholesteatoma. Imaging with dmOCT allowed the visualization of specific and characteristic cellular and subcellular structures in the cross-sectional images, which can be identified only to a limited extent in native mOCT. Conclusion: We demonstrated for the first time a new marker-free visualization in otitis media based on intracellular motion using dmOCT.},
DOI = {10.3390/photonics10060685}
}
Michael Schmalz, Xiao-Xuan Liang, Ines Wieser, Caroline Gruschel, Lukas Muskalla, Martin Thomas Stöckl, Roland Nitschke, Norbert Linz, Alfred Leitenstorfer, Alfred Vogel, and Elisa Ferrando-May,
Dissection of DNA damage and repair pathways in live cells by femtosecond laser microirradiation and free-electron modeling, Proceedings of the National Academy of Sciences , vol. 120, no. 25, pp. e2220132120, 06 2023.
DOI:10.1073/pnas.2220132120
Datei: pnas.2220132120
Bibtex: BibTeX
@article{
doi:10.1073/pnas.2220132120,
author = {Michael Schmalz  and Xiao-Xuan Liang  and Ines Wieser  and Caroline Gruschel  and Lukas Muskalla  and Martin Thomas Stöckl  and Roland Nitschke  and Norbert Linz  and Alfred Leitenstorfer  and Alfred Vogel  and Elisa Ferrando-May },
title = {Dissection of DNA damage and repair pathways in live cells by femtosecond laser microirradiation and free-electron modeling},
journal = {Proceedings of the National Academy of Sciences},
volume = {120},
number = {25},
pages = {e2220132120},
year = {2023},
doi = {10.1073/pnas.2220132120},
URL = {https://www.pnas.org/doi/abs/10.1073/pnas.2220132120},
eprint = {https://www.pnas.org/doi/pdf/10.1073/pnas.2220132120},
abstract = {Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron–DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.}}
Alexander Altmann, Michel Eden, Gereon Hüttmann, Christian Schell, and Ramtin Rahmanzadeh,
Porphyrin-based sensor films for monitoring food spoilage, Food Packaging and Shelf Life , vol. 38, pp. 101105, 06 2023.
DOI:https://doi.org/10.1016/j.fpsl.2023.101105
Datei: S2214289423000820
Bibtex: BibTeX
@article{ALTMANN2023101105,
title = {Porphyrin-based sensor films for monitoring food spoilage},
journal = {Food Packaging and Shelf Life},
volume = {38},
pages = {101105},
year = {2023},
issn = {2214-2894},
doi = {https://doi.org/10.1016/j.fpsl.2023.101105},
url = {https://www.sciencedirect.com/science/article/pii/S2214289423000820},
author = {Alexander Altmann and Michel Eden and Gereon Hüttmann and Christian Schell and Ramtin Rahmanzadeh},
keywords = {Biogenic amines, Sensors, Fish freshness, Food safety, Porphyrin, Smart packaging},
abstract = {To increase food safety and to minimize food waste, it is interesting for the food industry and consumers to be able to determine food spoilage continuously and non-destructively. When food of animal origin is degraded, amines are released as protein breakdown products, which could be used to monitor the freshness of meat and fish. In this work, we introduce a porphyrin-based sensor foil aimed at the detection of biogenic amines. The sensor-porphyrin is formulated on mesoporous silica. Reactivity towards moderate humidity was eliminated by dispersion of the functionalized silica in polyethylene (PE), followed by thermal extrusion resulting in PE foils. After exposure to amines, the sensor foil changes its color irreversibly from green to red. The color change is accompanied by a pronounced shift of the fluorescence spectrum, which was used as a sensitive method to detect the degradation of fish products in model experiments. Titanium dioxide particles in the foil increased the detected fluorescence emission. Experiments with fish filets showed the applicability of the sensor foils in a real-life application by indicating the degree of spoilage after several days, while the microbial growth was depicted by total viable count. We anticipate that our sensor can be an integral part of smart food packages, helping to track the freshness of food during transport or storage.}
}
Sarah Latus, Sarah Grube, Tim Eixmann, Maximilian Neidhardt, Stefan Gerlach, Robin Mieling, Gereon Hüttmann, Matthias Lutz, and Alexander Schlaefer,
A Miniature Dual-Fiber Probe for Quantitative Optical Coherence Elastography, IEEE Transactions on Biomedical Engineering , pp. 1-9, 05 2023.
DOI:10.1109/TBME.2023.3275539
Bibtex: BibTeX
@ARTICLE{10122996,

  author={Latus, Sarah and Grube, Sarah and Eixmann, Tim and Neidhardt, Maximilian and Gerlach, Stefan and Mieling, Robin and Hüttmann, Gereon and Lutz, Matthias and Schlaefer, Alexander},

  journal={IEEE Transactions on Biomedical Engineering}, 

  title={A Miniature Dual-Fiber Probe for Quantitative Optical Coherence Elastography}, 

  year={2023},

  volume={},

  number={},

  pages={1-9},

  doi={10.1109/TBME.2023.3275539}}
Patrick Kuppler, Paul Strenge, Birgit Lange, Sonja Spahr-Hess, Wolfgang Draxinger, Christian Hagel, Dirk Theisen-Kunde, Ralf Brinkmann, Robert Huber, Volker Tronnier, and Matteo Mario Bonsanto,
The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study, Frontiers in Oncology , vol. 13, 04 2023.
DOI:10.3389/fonc.2023.1151149
Datei: fonc.2023.1151149
Bibtex: BibTeX
Kuppler P, Strenge P, Lange B, Spahr-Hess S, Draxinger W, Hagel C, Theisen-Kunde D, Brinkmann R, Huber R, Tronnier V and Bonsanto MM (2023) The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study. Front. Oncol. 13:1151149. doi: 10.3389/fonc.2023.1151149
Norbert Linz, Sebastian Freidank, Xiao-Xuan Liang, and Alfred Vogel,
Laser Micro- and Nanostructuring for Refractive Eye Surgery, in Ultrafast Laser Nanostructuring: The Pursuit of Extreme Scales , Stoian, Razvanand and Bonse, Jörn, Eds. Cham: Springer International Publishing, 042023, pp. 1217--1245.
DOI:10.1007/978-3-031-14752-4_33
ISBN:978-3-031-14752-4
Datei: 978-3-031-14752-4_33
Bibtex: BibTeX
@Inbook{Linz2023,
author="Linz, Norbert
and Freidank, Sebastian
and Liang, Xiao-Xuan
and Vogel, Alfred",
editor="Stoian, Razvan
and Bonse, J{\"o}rn",
title="Laser Micro- and Nanostructuring for Refractive Eye Surgery",
bookTitle="Ultrafast Laser Nanostructuring: The Pursuit of Extreme Scales",
year="2023",
publisher="Springer International Publishing",
address="Cham",
pages="1217--1245",
abstract="Every year, more than a million refractive eye operations using femtosecond (fs) laser procedures are performed, and yet the cutting process in corneal tissue remains an area for development. In this chapter, we first review the state of the art of infrared (IR) fs laser dissection in laser in situ keratomileusis (LASIK) and small incision lenticule extraction (SMILE) and formulate the challenges for an improvement of precision and reduction of side effects. Since overcoming these challenges requires better knowledge of the cutting mechanisms, the plasma-mediated corneal dissection process is analyzed by high-speed photography of laser-induced bubble dynamics with up to 50 Mio frames/s, histological analysis of the cuts, and gas chromatography of the dissection products. Based on these results, we show that cutting efficiency and precision are improved through focus shaping by means of a helical phase plate, which converts the linear polarized Gaussian fs laser beam into a Laguerre-Gaussian vortex beam. The focus of the vortex beam has a ring shape with the same length in axial direction as the focus of a Gaussian beam but larger diameter. This greatly facilitates cleavage along the corneal lamellae, enabling cutting with low plasma energy density, higher precision, and fewer mechanical side effects. A shortening of the laser plasma length at constant focusing angle by use of UV-A laser pulses instead of IR pulses further improves precision. To compare the performance of UV and IR Gaussian and vortex beams, the incident and absorbed laser energy needed for easy removal of flaps created in porcine corneas are determined at various pulse durations and the smoothness of cuts is evaluated by scanning electron microscopy. Overall, vortex beams perform better than Gaussian beams for all wavelengths and can be easily implemented in clinical systems. Finally, we discuss a novel concept for refractive correction based on the introduction of refractive index changes in the corneal stroma by localized low-density plasma formation. Experimental findings that UV wavelengths work better for this purpose than IR wavelengths are explained through an analysis of the wavelength dependence of free electron density and energy spectrum that are obtained by numerical simulations.",
isbn="978-3-031-14752-4",
doi="10.1007/978-3-031-14752-4_33",
url="https://doi.org/10.1007/978-3-031-14752-4_33"
}
Alessa Hutfilz, Dirk Theisen-Kunde, Matteo M. Bonsanto, and Ralf Brinkmann,
Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection, Lasers in Medical Science , vol. 38, pp. 94, 03 2023. https://doi.org/10.1007/s10103-023-03747-9 .
DOI:10.1007/s10103-023-03747-9
Weblink: https://doi.org/10.1007/s10103-023-03747-9
Bibtex: BibTeX
@article{RN5430,
   author = {Hutfilz, Alessa;Theisen-Kunde, Dirk;Bonsanto, Matteo Mario and Brinkmann, Ralf},
   title = {Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection},
   journal = {Lasers in Medical Science},
   volume = {38},
   number = {1},
   pages = {94},
   ISSN = {1435-604X},
   DOI = {10.1007/s10103-023-03747-9},
   url = {https://doi.org/10.1007/s10103-023-03747-9},
   year = {2023},
   type = {Journal Article}
}
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schützeck, Nicolas Detrez, Paul Strenge, Veit Danicke, Jessica Kren, Patrick Kuppler, Sonja Spahr-Hess, Matteo Mario Bonsanto, Ralf Brinkmann, and Robert Huber,
High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time, in High-Speed Biomedical Imaging and Spectroscopy VIII , Kevin K. Tsia and Keisuke Goda, Eds. SPIE, 032023. pp. 123900D.
DOI:10.1117/12.2648505
Bibtex: BibTeX
@inproceedings{10.1117/12.2648505,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Sch{\"u}tzeck and Nicolas Detrez and Paul Strenge and Veit Danicke and Jessica Kren and Patrick Kuppler and Sonja Spahr-Hess and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
title = {{High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time}},
volume = {12390},
booktitle = {High-Speed Biomedical Imaging and Spectroscopy VIII},
editor = {Kevin K. Tsia and Keisuke Goda},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123900D},
abstract = {Neuro-surgery is challenged by the difficulties of determining brain tumor boundaries during excisions. Optical coherence tomography is investigated as an imaging modality for providing a viable contrast channel. Our MHz-OCT technology enables rapid volumetric imaging, suitable for surgical workflows. We present a surgical microscope integrated MHz-OCT imaging system, which is used for the collection of in-vivo images of human brains, with the purpose of being used in machine learning systems that shall be trained to identify and classify tumorous tissue.},
keywords = {optical coherence tomography, brain tumor, neurosurgery, machine learning, contrast augmentation, histology dataset, clinical study, in-vivo imaging},
year = {2023},
doi = {10.1117/12.2648505},
URL = {https://doi.org/10.1117/12.2648505}
}
Thomas Gottschall, Tobias Meyer-Zedler, Matthias Eibl, Tom Pfeiffer, Hubertus Hakert, Michael Schmitt, Robert Huber, Andreas Tünnermann, Jens Limpert, and Juergen Popp,
Ultrafast Spectral Tuning of a Fiber Laser for Time-Encoded Multiplex Coherent Raman Scattering Microscopy, The Journal of Physical Chemistry B , pp. null, 03 2023.
DOI:10.1021/acs.jpcb.2c09115
Datei: acs.jpcb.2c09115
Bibtex: BibTeX
@article{doi:10.1021/acs.jpcb.2c09115,
author = {Gottschall, Thomas and Meyer-Zedler, Tobias and Eibl, Matthias and Pfeiffer, Tom and Hakert, Hubertus and Schmitt, Michael and Huber, Robert and Tünnermann, Andreas and Limpert, Jens and Popp, Juergen},
title = {Ultrafast Spectral Tuning of a Fiber Laser for Time-Encoded Multiplex Coherent Raman Scattering Microscopy},
journal = {The Journal of Physical Chemistry B},
volume = {0},
number = {0},
pages = {null},
year = {0},
doi = {10.1021/acs.jpcb.2c09115},
    note ={PMID: 36917762},
URL = {https://doi.org/10.1021/acs.jpcb.2c09115},
eprint = { https://doi.org/10.1021/acs.jpcb.2c09115}
}
Manabu Yamamoto, Yoko Miura, Kumiko Hirayama, Akika Kyo, Takeya Kohno, Dirk Theisen-Kunde, Ralf Brinkmann, and Shigeru Honda,
Comparative Treatment Study on Macular Edema Secondary to Branch Retinal Vein Occlusion by Intravitreal Ranibizumab with and without Selective Retina Therapy, Life , vol. 13, no. 3, pp. 769, 03 2023.
DOI:10.3390/life13030769
Datei: 769
Bibtex: BibTeX
@article{RN5362,
   author = {Yamamoto, Manabu;Miura, Yoko;Hirayama, Kumiko;Kyo, Akika;Kohno, Takeya;Theisen-Kunde, Dirk;Brinkmann, Ralf and Honda, Shigeru},
   title = {Comparative Treatment Study on Macular Edema Secondary to Branch Retinal Vein Occlusion by Intravitreal Ranibizumab with and without Selective Retina Therapy},
   journal = {Life},
   volume = {13},
   number = {3},
   pages = {769},
   ISSN = {2075-1729},
   DOI = {10.3390/life13030769},
   url = {https://www.mdpi.com/2075-1729/13/3/769},
   year = {2023},
   type = {Journal Article}
}
Madita Göb, Simon Lotz, Linh Ha-Wissel, Sazgar Burhan, Sven Böttger, Floris Ernst, Jennifer Hundt, and Robert Huber,
Large area robotically assisted optical coherence tomography (LARA-OCT) for skin imaging with MHz-OCT surface tracking, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 123670C.
DOI:10.1117/12.2652616
Bibtex: BibTeX
@inproceedings{10.1117/12.2652616,
author = {Madita G{\"o}b and Simon Lotz and Linh Ha-Wissel and Sazgar Burhan and Sven B{\"o}ttger and Floris Ernst and Jennifer Hundt and Robert Huber},
title = {{Large area robotically assisted optical coherence tomography (LARA-OCT) for skin imaging with MHz-OCT surface tracking}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123670C},
abstract = {Optical coherence tomography (OCT) is a powerful imaging technique to non-invasively differentiate between healthy skin and pathological conditions. Unfortunately, commercially available OCT-systems are typically slow and not capable of scanning large areas at reasonable speed. Since skin lesions may extend over several square centimeters, potential inflammatory infiltrates remain undetected. Here, we present large area robotically assisted OCT (LARA-OCT) for skin imaging. Therefor a collaborative robot is combined with an existing, home-built 3.3 MHz-OCT-system and for surface tracking an online probe-to-surface control is implemented which is solely based on the OCT surface signal. It features a combined surface-distance and surface-orientation closed-loop control algorithm, which enables automatic positioning and alignment of the probe across the target while imaging. This allows to acquire coherent OCT images of skin areas beyond 10 cm<sup>2</sup>. },
keywords = {Optical Coherence Tomography, Fourier Domain Mode Locking, Robotically Assisted Imaging Systems, Three-dimensional image acquisition, Large Area Scanning, Skin Imaging , OCT, FDML},
year = {2023},
doi = {10.1117/12.2652616},
URL = {https://doi.org/10.1117/12.2652616}
}
Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
900 nm swept source FDML laser with kW peak power, in Fiber Lasers XX: Technology and Systems , V. R. Supradeepa, Eds. SPIE, 032023. pp. 124001I.
DOI:10.1117/12.2649663
Bibtex: BibTeX
@inproceedings{10.1117/12.2649663,
author = {Philipp Lamminger and Hubertus Hakert and Simon Lotz and Jan Philip Kolb and Tonio Kutscher and Sebastian Karpf and Robert Huber},
title = {{900 nm swept source FDML laser with kW peak power}},
volume = {12400},
booktitle = {Fiber Lasers XX: Technology and Systems},
editor = {V.  R. Supradeepa},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {124001I},
abstract = {A wavelength agile 900 nm 2.5 kW peak power fiber laser is created by four-wave mixing (FWM) in a photonic crystal fiber (PCF), while amplifying a 1300 nm Fourier-domain mode-locked (FDML) laser. The FWM process is pumped by a home-built 1064 nm master oscillator power amplifier (MOPA) laser and seeded by a home-built 1300 nm FDML laser, generating high power pulses at wavelengths, where amplification by active fiber media is difficult. The 900 nm pulses have a spectral linewidth of 70 pm, are tunable over 54 nm and have electronic pulse-to-pulse tuning capability. These pulses can be used for nonlinear imaging like two-photon or coherent anti-Stokes Raman microscopy (CARS) microscopy including spectro-temporal laser imaging by diffracted excitation (SLIDE) and time-encoded (Tico) stimulated Raman microscopy.},
keywords = {Fourier domain mode locking,  FDML, Raman, two photon microscopy, SLIDE, 900 nm, fiber laser, photonic crystal fiber, swept source},
year = {2023},
doi = {10.1117/12.2649663},
URL = {https://doi.org/10.1117/12.2649663}
}
Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Vladimir Shidlovski, and Robert Huber,
850 nm FDML: performance and challenges, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236705.
DOI:10.1117/12.2649646
Bibtex: BibTeX
@inproceedings{10.1117/12.2649646,
author = {M. Klufts and S. Lotz and M. A. Bashir and T. Pfeiffer and A. Mlynek and W. Wieser and A. Chamorovskiy and V. Shidlovski and R. Huber},
title = {{850 nm FDML: performance and challenges}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236705},
abstract = {We demonstrate a Fourier domain mode locked (FDML) laser centered around 850 nm with a sweeping range of 50 nm, a fundamental repetition rate of 2&times;416 kHz and an output power of 2 mW. A new cavity design using three chirped Fiber Bragg gratings is required to overcome sweeping limitations caused by high dispersion. Other solutions to address challenges such as high loss and high polarization mode dispersion will be discussed along with performance. A main application of this laser will be retinal imaging, but it might also be applicable for TiCo-Raman and SLIDE microscopy. },
keywords = {Swept source, FDML, Laser, Ophthalmic imaging, OCT, 800 nm, retinal imaging, light sources},
year = {2023},
doi = {10.1117/12.2649646},
URL = {https://doi.org/10.1117/12.2649646}
}
Muhammad Asim Bashir, Simon Lotz, Marie Klufts, Igor Krestnikov, Christian Jirauschek, and Robert Huber,
1190 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT), in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236707.
DOI:10.1117/12.2652884
Bibtex: BibTeX
@inproceedings{10.1117/12.2652884,
author = {M. A. Bashir and S. Lotz and M. Klufts and I. Krestnikov and C. Jirauschek and R. Huber},
title = {{1190 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT)}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236707},
abstract = {We demonstrate a Fourier domain mode locked (FDML) laser centered at 1190 nm with 2&times;410 kHz sweep repetition rate, a sweeping range of 100 nm and 2.5 mW output power. The laser is based on a quantum dot-semiconductor optical amplifier with small linewidth enhancement factor. The laser could be used as a probe laser in stimulated Raman scattering microscopy and it may be attractive for optical coherence tomography due to low water absorption and the spectral signature of lipids around 1200nm. Moreover, it is ideal to close the gap between FDML lasers at 1064 nm and 1300 nm. Combining these three lasers can enable ultrawideband sweeping to improve the axial OCT resolution down to 2 &mu;m. },
keywords = {FDML, Swept source, laser, SS-OCT, OCT, Tunable lasers},
year = {2023},
doi = {10.1117/12.2652884},
URL = {https://doi.org/10.1117/12.2652884}
}
Awanish P. Singh, Madita Göb, Martin Ahrens, Tim Eixmann, Hinnerk Schulz-Hildebrandt, Gereon Hüttmann, Robert Huber, and Maik Rahlves,
Synchronous high-speed OCT imaging with sensor less brushless DC motor and FDML laser in a phase-locked loop, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236703.
DOI:10.1117/12.2652955
Bibtex: BibTeX
@inproceedings{10.1117/12.2652955,
author = {Awanish Pratap Singh and Madita G{\"o}b and Martin Ahrens and Tim Eixmann and Hinnerk Schulz-Hildebrandt and Gereon H{\"u}ttmann and Robert Huber and Maik Rahlves},
title = {{Synchronous high-speed OCT imaging with sensor less brushless DC motor and FDML laser in a phase-locked loop}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236703},
abstract = {High-speed endoscopic optical coherence tomography (OCT) imaging in the MHz range has shown great potential in various medical applications ranging from cancer screening to vascular disease monitoring. High-speed imaging always suffers from non-uniform rotational distortion (NURD) due to asynchronous motor rotation with the OCT system. Several research groups have previously attempted to solve this problem, using either an expensive motor with a sensor or numerical correction after data acquisition. However, both techniques pose challenges for practical use. Therefore, in this study, we use an inexpensive sensorless brushless DC motor with a Fourier domain mode-locked (FDML) laser-based MHz OCT system and try to resolve the problem of synchronization using three different modalities, (i) Slave-mode: The FDML frequency serves as a master frequency for the motor, which is phase-locked to the FDML frequency, (ii) Master-mode: The revolution trigger obtained from the motor’s back electromotive force (BEMF) signal serves as a trigger signal for the OCT imaging system, (iii) Both: Fully synchronized setup, where the motor rotation is synchronized with the laser and the imaging system is synchronized with the motor to achieve phase-stable OCT imaging. The first case slightly fluctuates in live preview and imaging due to the absence of a revolution trigger, while the second has varying motor speeds. Therefore, we use the third case to phase-lock the motor with FDML and get a distortion-free live preview and image acquisition. Finally, we demonstrate high-speed SS-OCT structural imaging (at 3.3 MHz A-scan rates) of a finger with a 16 mm diameter probe (at 40,000 rpm).},
keywords = {Optical Coherence Tomography, Endoscopy, FDML , Closed Loop Motor Control, NURD compensation, Brushless DC Motor, Back Electromotive Force},
year = {2023},
doi = {10.1117/12.2652955},
URL = {https://doi.org/10.1117/12.2652955}
}
Sazgar Burhan, Nicolas Detrez, Katharina Rewerts, Madita Göb, Christian Hagel, Matteo M. Bonsanto, Dirk Theisen-Kunde, Robert Huber, and Ralf Brinkmann,
Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 123680F.
DOI:10.1117/12.2648301
Bibtex: BibTeX
@inproceedings{10.1117/12.2648301,
author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate}},
volume = {12368},
booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI},
editor = {Caroline Boudoux and James W. Tunnell},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123680F},
abstract = {Optical coherence elastography (OCE) offers the possibility of obtaining the mechanical behavior of a tissue. When also  using a non-contact mechanical excitation, it mimics palpation without interobserver variability. One of the most frequently  used techniques is phase-sensitive OCE. Depending on the system, depth-resolved changes in the sub-µm to nm range can  be detected and visualized volumetrically. Such an approach is used in this work to investigate and detect transitions  between healthy and tumorous brain tissue as well as inhomogeneities in the tumor itself to assist the operating surgeon  during tumor resection in the future. We present time-resolved, phase-sensitive OCE measurements on various ex vivo brain tumor samples using an ultra-fast 3.2 MHz swept-source optical coherence tomography (SS-OCT) system with a frame rate of 2.45 kHz. 4 mm line scans are acquired which, in combination with the high imaging speed, allow monitoring and investigation of the sample's behavior in response to the mechanical load. Therefore, an air-jet system applies a 200 ms  short air pulse to the sample, whose non-contact property facilitates the possibility for future in vivo measurements. Since we can temporally resolve the response of the sample over the entire acquisition time, the mechanical properties are evaluated at different time points with depth resolution. This is done by unwrapping the phase data and performing subsequent assessment. Systematic ex vivo brain tumor measurements were conducted and visualized as distribution maps.  The study outcomes are supported by histological analyses and examined in detail.},
keywords = { Optical Coherence Tomography, Optical Coherence Elastography, Phase-sensitive OCT, Fourier Domain Mode Locking, Brain Tumor, Phase Unwrapping, Tissue Characterization, Biomechanics},
year = {2023},
doi = {10.1117/12.2648301},
URL = {https://doi.org/10.1117/12.2648301}
}
Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 1236805.
DOI:10.1117/12.2649963
Bibtex: BibTeX
@inproceedings{10.1117/12.2649963,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography}},
volume = {12368},
booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI},
editor = {Caroline Boudoux and James W. Tunnell},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236805},
abstract = {The ill-defined tumor borders of glioblastoma multiforme pose a major challenge for the surgeon during tumor resection,  since the goal of the tumor resection is the complete removal, while saving as much healthy brain tissue as possible. In  recent years, optical coherence tomography (OCT) was successfully used to classify white matter from tumor infiltrated  white matter by several research groups. Motivated by these results, a dataset was created, which consisted of sets of  corresponding ex vivo OCT images, which were acquired by two OCT-systems with different properties (e.g. wavelength  and resolution). Each image was annotated with semantic labels. The labels differentiate between white and gray matter  and three different stages of tumor infiltration. The data from both systems not only allowed a comparison of the ability of  a system to identify the different tissue types present during the tumor resection, but also enable a multimodal tissue  analysis evaluating corresponding OCT images of the two systems simultaneously. A convolutional neural network with  dirichlet prior was trained, which allowed to capture the uncertainty of a prediction. The approach increased the sensitivity  of identifying tumor infiltration from 58 % to 78 % for data with a low prediction uncertainty compared to a previous  monomodal approach. },
keywords = {optical coherence tomography, oct, brain, classification, tumor, dual wavelength, glioblastoma multiforme, tissue analysis},
year = {2023},
doi = {10.1117/12.2649963},
URL = {https://doi.org/10.1117/12.2649963}
}
Matthias Strauch, Jan Philip Kolb, Christian Rose, Nadine Merg, Jennifer Hundt, Christiane Kümpers, Sven Perner, Sebastian Karpf, and Robert Huber,
Accelerating intraoperative tumor histology with sectioning-free multiphoton microscopy, European Journal of Surgical Oncology , vol. 49, no. 2, pp. e210, 02 2023.
DOI:https://doi.org/10.1016/j.ejso.2022.11.575
Datei: S0748798322013245
Bibtex: BibTeX
@article{STRAUCH2023e210,
title = {Accelerating intraoperative tumor histology with sectioning-free multiphoton microscopy},
journal = {European Journal of Surgical Oncology},
volume = {49},
number = {2},
pages = {e210},
year = {2023},
issn = {0748-7983},
doi = {https://doi.org/10.1016/j.ejso.2022.11.575},
url = {https://www.sciencedirect.com/science/article/pii/S0748798322013245},
author = {Matthias Strauch and Jan Philip Kolb and Christian Rose and Nadine Merg and Jennifer Hundt and Christiane Kümpers and Sven Perner and Sebastian Karpf and Robert Huber}
}
Leo Puyo, Clara Pfäffle, Hendrik Spahr, Jonas Franke, Daniel Bublitz, Dierck Hillmann, and Gereon Hüttmann,
Diffuse-illumination holographic optical coherence tomography, Opt. Express , vol. 31, no. 20, pp. 33500--33517, 2023. Optica Publishing Group.
DOI:10.1364/OE.498654
Datei: abstract.cfm
Bibtex: BibTeX
@article{Puyo:23,
author = {L\'{e}o Puyo and Clara Pf\"{a}ffle and Hendrik Spahr and Jonas Franke and Daniel Bublitz and Dierck Hillmann and Gereon H\"{u}ttmann},
journal = {Opt. Express},
keywords = {Fourier optics; Full field optical coherence tomography; Image quality; Imaging techniques; Spatial frequency; Spatial light modulators},
number = {20},
pages = {33500--33517},
publisher = {Optica Publishing Group},
title = {Diffuse-illumination holographic optical coherence tomography},
volume = {31},
month = {Sep},
year = {2023},
url = {https://opg.optica.org/oe/abstract.cfm?URI=oe-31-20-33500},
doi = {10.1364/OE.498654},
abstract = {Holographic optical coherence tomography (OCT) is a powerful imaging technique, but its ability to reveal low-reflectivity features is limited. In this study, we performed holographic OCT by incoherently averaging volumes with changing diffuse illumination of numerical aperture (NA) equal to the detection NA. While the reduction of speckle from singly scattered light is only modest, we discovered that speckle from multiply scattered light can be arbitrarily reduced, resulting in substantial improvements in image quality. This technique also offers the advantage of suppressing noises arising from spatial coherence, and can be implemented with a partially spatially incoherent light source for further mitigation of multiple scattering. Finally, we show that although holographic reconstruction capabilities are increasingly lost with decreasing spatial coherence, they can be retained over an axial range sufficient to standard OCT applications.},
}
Dirk Theisen-Kunde, Jessica Kren, Alessa Hutfilz, Matteo Mario Bonsanto, and Ralf Brinkmann,
Clinical evaluation of thulium laser / ultrasonic aspirator combination instrument during neurosurgical tumour resection, 2023.
Weblink: https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34?SSO=1
Bibtex: BibTeX
@inproceedings{RN5454,
   author = {Theisen-Kunde, D;Kren, J;Hutfilz, A;Bonsanto, M and Brinkmann, R},
   title = {Clinical evaluation of thulium laser/ultrasonic aspirator combination instrument during neurosurgical tumour resection},
   booktitle = {ECBO},
   publisher = {SPIE},
   url = {https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34},
   type = {Conference Proceedings}
}
Lara Buhl, Maron Dolling, Stefan Kassumeh, Siegfried G. Priglinger, Rox R. Anderson, Mark Bischoff, and Reginald Birngruber,
Corneal filler injection for enhancement after myopic small-incision lenticule extraction (SMILE), 2023.
DOI:10.1117/12.2649215
Dirk Theisen-Kunde, Florian Sommer, Veit Danicke, Lion Schützeck, Stefan Meyer, Christopher Kren, Maximilian Rixius, and Sebastian Karpf,
Small footprint SLIDE demonstrator for 40Hz volume rate multiphoton microscopy, in Advances in Microscopic Imaging IV , Emmanuel Beaurepaire and Adela Ben-Yakar and YongKeun Park, Eds. SPIE, 2023. pp. 126300Q.
DOI:10.1117/12.2670881
Datei: 12.2670881
Bibtex: BibTeX
@inproceedings{10.1117/12.2670881,
author = {Dirk Theisen-Kunde and Florian Sommer and Veit Danicke and Lion Sch{\"u}tzeck and Stefan Meyer and Christopher Kren and Maximilian Rixius and Sebastian Karpf},
title = {{Small footprint SLIDE demonstrator for 40Hz volume rate multiphoton microscopy}},
volume = {12630},
booktitle = {Advances in Microscopic Imaging IV},
editor = {Emmanuel Beaurepaire and Adela Ben-Yakar and YongKeun Park},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126300Q},
keywords = {multiphoton microscopy, flow cytometry, Fourier Domain Mode Locked Laser, SLIDE, kHz- Imaging},
year = {2023},
doi = {10.1117/12.2670881},
URL = {https://doi.org/10.1117/12.2670881}
}
Dirk Theisen-Kunde, Claus Burchard, Veit Danicke, Jan-Eric Fleger, Christopher Kren, Sebastian Wittmeier, Johann Roider, and Ralf Brinkmann,
Real-time temperature-control for cw retinal laser therapy in a clinical study, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 1262723.
DOI:10.1117/12.2670839
Datei: 12.2670839
Bibtex: BibTeX
@inproceedings{10.1117/12.2670839,
author = {Dirk Theisen-Kunde and Claus von der Burchard and Veit Danicke and Jan-Eric Fleger and Christopher Kren and Sebastian Wittmeier and Johann Roider and Ralf Brinkmann},
title = {{Real-time temperature-control for cw retinal laser therapy in a clinical study}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1262723},
keywords = {retinal laser, real time temperature control, clinical study, CSCR},
year = {2023},
doi = {10.1117/12.2670839},
URL = {https://doi.org/10.1117/12.2670839}
}
Nicolas Detrez, Sazgar Burhan, Katharina Rewerts, Jessica Kren, Christian Hagel, Matteo Mario Bonsanto, Dirk Theisen-Kunde, Robert Huber, and Ralf Brinkmann,
Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data, in Optical Elastography and Tissue Biomechanics X , Kirill V. Larin and Giuliano Scarcelli and Frédérique Vanholsbeeck, Eds. SPIE, 2023. pp. 1238105.
DOI:10.1117/12.2649835
Datei: 12.2649835
Bibtex: BibTeX
@inproceedings{10.1117/12.2649835,
author = {Nicolas Detrez and Sazgar Burhan and Katharina Rewerts and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data}},
volume = {12381},
booktitle = {Optical Elastography and Tissue Biomechanics X},
editor = {Kirill V. Larin and Giuliano Scarcelli and Fr{\'e}d{\'e}rique Vanholsbeeck},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1238105},
keywords = {Optical Coherence Elastography, Air-Jet, Air-Puff, biomechanics, viscoelasticity, rheology, brain tissue, brain tumor},
year = {2023},
doi = {10.1117/12.2649835},
URL = {https://doi.org/10.1117/12.2649835}
}
Tonio F. Kutscher, Philipp Lamminger, Anton Gruber, Christina Leonhardt, Annika Hunold, Robert A. Huber, and Sebastian Karpf,
Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm, Opt. Lett. , vol. 48, no. 23, pp. 6096--6099, 2023. Optica Publishing Group.
DOI:10.1364/OL.500943
Datei: abstract.cfm
Bibtex: BibTeX
@article{Kutscher:23,
author = {Tonio F. Kutscher and Philipp Lamminger and Anton Gruber and Christina Leonhardt and Annika Hunold and Robert A. Huber and Sebastian Karpf},
journal = {Opt. Lett.},
keywords = {Erbium-doped fiber amplifiers; Laser imaging; Laser sources; Lidar; Multiphoton microscopy; Picosecond pulses},
number = {23},
pages = {6096--6099},
publisher = {Optica Publishing Group},
title = {Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm},
volume = {48},
month = {Dec},
year = {2023},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-48-23-6096},
doi = {10.1364/OL.500943},
abstract = {Swept-source lasers are versatile light sources for spectroscopy, imaging, and microscopy. Swept-source-powered multiphoton microscopy can achieve high-speed, inertia-free point scanning with MHz line-scan rates. The recently introduced spectro-temporal laser imaging by diffractive excitation (SLIDE) technique employs swept-source lasers to achieve kilohertz imaging rates by using a swept-source laser in combination with a diffraction grating for point scanning. Multiphoton microscopy at a longer wavelength, especially in the shortwave infrared (SWIR) region, can have advantages in deep tissue penetration or applications in light detection and ranging (LiDAR). Here we present a swept-source laser around 1550 nm providing high-speed wavelength agility and high peak power pulses for nonlinear excitation. The swept-source laser is a Fourier-domain mode-locked (FDML) laser operating at 326 kHz sweep rate. For high peak powers, the continuous wave (cw) output is pulse modulated to short picosecond pulses and amplified using erbium-doped fiber amplifiers (EDFAs) to peak powers of several kilowatts. This FDML-master oscillator power amplifier (FDML-MOPA) setup uses reliable, low-cost fiber components. As proof-of-principle measurement, we show third-harmonic generation (THG) using harmonic nanoparticles at the 10 MHz pulse excitation rate. This new, to the best of our knowledge, laser source provides unique performance parameters for applications in nonlinear microscopy, spectroscopy, and ranging.},
}
Nicolas Detrez, Sazgar Burhan, Paul Strenge, Jessica Kren, Christian Hagel, Matteo Mario Bonsanto, Dirk Theisen-Kunde, Robert Huber, and Ralf Brinkmann,
Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis, in Emerging Technologies for Cell and Tissue Characterization II , Seemantini K. Nadkarni and Giuliano Scarcelli, Eds. SPIE, 2023. pp. 126290M.
DOI:10.1117/12.2670944
Datei: 12.2670944
Bibtex: BibTeX
@inproceedings{10.1117/12.2670944,
author = {Nicolas Detrez and Sazgar Burhan and Paul Strenge and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis}},
volume = {12629},
booktitle = {Emerging Technologies for Cell and Tissue Characterization II},
editor = {Seemantini K. Nadkarni and Giuliano Scarcelli},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126290M},
keywords = {Optical Coherence Elastography, Air-Jet, Phase-sensitive OCT, Histology Structure Analysis, Color-Deconvolution, Structural Tensors, Brain tumor, Tissue Characterization},
year = {2023},
doi = {10.1117/12.2670944},
URL = {https://doi.org/10.1117/12.2670944}
}
Paula Enzian, Birgit Lange, Zuzana Penxova, Anke Leichtle, Yoko Miura, Karl-Ludwig Bruchhage, and Ralf Brinkmann,
Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126271T.
DOI:10.1117/12.2670902
Datei: 12.2670902
Bibtex: BibTeX
@inproceedings{10.1117/12.2670902,
author = {Paula Enzian and Birgit Lange and Zuzana Penxov{\'a} and Anke Leichtle and Yoko Miura and Karl-Ludwig Bruchhage and Ralf Brinkmann},
title = {{Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126271T},
keywords = {FLIM, autofluorescence, otitis media, cholesteatoma, middle ear, inflammation},
year = {2023},
doi = {10.1117/12.2670902},
URL = {https://doi.org/10.1117/12.2670902}
}
Sazgar Burhan, Nicolas Detrez, Katharina Rewerts, Madita Göb, Steffen Buschschlüter, Christian Hagel, Matteo M. Bonsanto, Dirk Theisen-Kunde, Robert Huber, and Ralf Brinkmann,
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
DOI:10.1117/12.2652847
Bibtex: BibTeX
@inproceedings{10.1117/12.2652847,
author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Steffen Buschschl{\"u}ter and Christian Hagel and Matteo Mario Bonsanto M.D. and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Phase analysis strategies for MHz OCE in the large displacement regime}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123670Q},
abstract = {In neurosurgical tumor operations on the central nervous system, intraoperative haptic information often assists for discrimination between healthy and diseased tissue. Thus, it can provide the neurosurgeon with additional intraoperative source of information during resection, next to the visual information by the light microscope, fluorescent dyes and neuronavigation. One approach to obtain elastic and viscoelastic tissue characteristics non-subjectively is phase-sensitive optical coherence elastography (OCE), which is based on the principle of optical coherence tomography (OCT). While phase-sensitive OCE offers significantly higher displacement sensitivity inside a sample than commonly used intensity-based correlation methods, it requires a reliable algorithm to recover the phase signal, which is mathematically restricted in the -&pi; to &pi; range. This problem of phase wrapping is especially critical for inter-frame phase analysis since the time intervals between two referenced voxels is long. Here, we demonstrate a one-dimensional unwrapping algorithm capable of removing up to 4&pi;-ambiguities between two frames in the complex phase data obtained from a 3.2 MHz-OCT system. The high sampling rate allows us to resolve large sample displacements induced by a 200 ms air pulse and acquires pixel-precise detail information. The deformation behavior of the tissue can be monitored over the entire acquisition time, offering various subsequent mechanical analysis procedures. The reliability of the algorithm and imaging concept was initially evaluated using different brain tumor mimicking phantoms. Additionally, results from human ex vivo brain tumor samples are presented and correlated with histological findings supporting the robustness of the algorithm.},
keywords = {Optical Coherence Tomography, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, Phase-sensitive OCT, Phase Unwrapping, Brain tumor, Biomechanics},
year = {2023},
doi = {10.1117/12.2652847},
URL = {https://doi.org/10.1117/12.2652847}
}
Cuiping Yao, Xiao-Xuan Liang, Sijia Wang, Jing Xin, Luwei Zhang, and Zhenxi Zhang,
Optical Theranostics Based on Gold Nanoparticles, in Biomedical Photonic Technologies , John Wiley & Sons, Ltd, 2023, pp. 245-284.
DOI:https://doi.org/10.1002/9783527823550.ch8
ISBN:9783527823550
Datei: 9783527823550.ch8
Bibtex: BibTeX
@inbook{doi:https://doi.org/10.1002/9783527823550.ch8,
author = {Yao, Cuiping and Liang, Xiao-Xuan and Wang, Sijia and Xin, Jing and Zhang, Luwei and Zhang, Zhenxi},
publisher = {John Wiley & Sons, Ltd},
isbn = {9783527823550},
title = {Optical Theranostics Based on Gold Nanoparticles},
booktitle = {Biomedical Photonic Technologies},
chapter = {8},
pages = {245-284},
doi = {https://doi.org/10.1002/9783527823550.ch8},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527823550.ch8},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527823550.ch8},
year = {2023},
keywords = {localized surface plasmon resonance, thermo-plasmonic effect, optical imaging, molecular diagnosis, tumor treatment, precise manipulation},
abstract = {Summary To obtain more detailed images of cellular processes or other nanoscale information in the fields of biology and medicine, or to improve phototherapy of cancer, various nanoparticles have emerged as optical probes, contrast agents, or optical absorbing agents. Among different nanoparticles, gold nanoparticle has obtained great attention and application in biomedical fields, such as optoporation, photo imaging, photodiagnosis, and phototherapy, due to their unique tunable optical, surface plasmon resonance, and photothermal features. In this chapter, the general physical mechanism of thermoplasmonic effects of gold nanoparticles was introduced, and the gold nanoparticles enhanced optical imaging, detection, and phototherapy of tumors was summarized.}
}
Christin Grill, Julie-Jacqueline Kuhl, Maximiliane Amelie Schlenz, and Ralf Brinkmann,
Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 2023. pp. 126320J.
DOI:10.1117/12.2670874
Datei: 12.2670874
Bibtex: BibTeX
@inproceedings{10.1117/12.2670874,
author = {Christin Grill and Julie-Jacqueline Kuhl and Maximiliane Amelie Schlenz and Ralf Brinkmann},
title = {{Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126320J},
keywords = {Optical Coherence Tomography, OCT, Monolithic dental crowns, CAD/CAM materials, Microcracks, Non-destructive method, Fatigue damage, Dental materials},
year = {2023},
doi = {10.1117/12.2670874},
URL = {https://doi.org/10.1117/12.2670874}
}
Alexander Altmann, Mohammad Khodaygani, Martin Leucker, Christian Schell, and Ramtin Rahmanzadeh,
Fluorescence based detection of gaseous food spoilage indicators, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270I.
DOI:10.1117/12.2671751
Datei: 12.2671751
Bibtex: BibTeX
@inproceedings{10.1117/12.2671751,
author = {Alexander Altmann and Mohammad Khodaygani and Martin Leucker and Christian Schell and Ramtin Rahmanzadeh},
title = {{Fluorescence based detection of gaseous food spoilage indicators}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270I},
keywords = {fluorescence spectroscopy, gas sensing, optode technology, food safety, porphyrins, SVM classifier},
year = {2023},
doi = {10.1117/12.2671751},
URL = {https://doi.org/10.1117/12.2671751}
}
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schuetz, Nicolas Detrez, Paul Strenge, Maximilian Rixius, Veit Danicke, Wolfgang Wieser, Jessica Kren, Patrick Kuppler, Sonja Spar-Hess, Matteo Mario Bonsanto M.D., Ralf Brinkmann, and Robert Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270W.
DOI:10.1117/12.2670953
Datei: 12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}
A. Martínez Jiménez, M. Spacek, Melanie Wacker, Robert Huber, A. Bradu, and Adrian Podoleanu,
MHz time stretch swept source using a commercial erbium-doped fiber amplifier, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 1236706.
DOI:10.1117/12.2651127
Datei: 12.2651127
Bibtex: BibTeX
@inproceedings{10.1117/12.2651127,
author = {A. Mart{\'i}nez Jim{\'e}nez and M. Spacek and M. Wacker and R. Huber and A. Bradu and A. Podoleanu},
title = {{MHz time stretch swept source using a commercial erbium-doped fiber amplifier}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236706},
keywords = {swept source, time-stretch, optical coherence tomography, mode-locking},
year = {2023},
doi = {10.1117/12.2651127},
URL = {https://doi.org/10.1117/12.2651127}
}
Stefan Meyer, Tonio F. Kutscher, Philipp Lamminger, Florian Sommer, and Sebastian Karpf,
Leveraging the periodic interference condition in electro-optic modulators for picosecond pulse generation, Opt. Continuum , vol. 2, no. 11, pp. 2298--2307, 2023. Optica Publishing Group.
DOI:10.1364/OPTCON.500969
Datei: abstract.cfm
Bibtex: BibTeX
@article{Meyer:23,
author = {Stefan Meyer and Tonio F. Kutscher and Philipp Lamminger and Florian Sommer and Sebastian Karpf},
journal = {Opt. Continuum},
keywords = {Femtosecond pulses; Fluorescence lifetime imaging; Phase modulation; Picosecond pulses; Single mode lasers; Ultrashort pulses},
number = {11},
pages = {2298--2307},
publisher = {Optica Publishing Group},
title = {Leveraging the periodic interference condition in electro-optic modulators for picosecond pulse generation},
volume = {2},
month = {Nov},
year = {2023},
url = {https://opg.optica.org/optcon/abstract.cfm?URI=optcon-2-11-2298},
doi = {10.1364/OPTCON.500969},
abstract = {Ultra-short optical pulses in the femtosecond and picosecond regime are typically generated using mode-locked lasers. However, in mode-locking, the pulse repetition rate is fundamentally linked to the cavity length of the laser, making it difficult to synchronize these laser pulses to other light sources. Here, we apply a pulse-on-demand approach to picosecond pulse generation with an electro-optic intensity modulator (EOM). The high, 40 GHz bandwidth of the EOM enables low picosecond pulses, however it shifts the problem of pulse generation to the electronic pulses, requiring high bandwidth electronics. In this study, we present an electro-optic operation, leveraging the periodic interference condition of intensity EOMs by operating it with rising edges at twice its V$\pi$ voltage. Utilizing this method, pulse durations as short as 10.9 ps were achieved by employing a 35 ps edge from an arbitrary waveform generator. The pulses were measured directly on a high-speed oscilloscope as well as indirectly through the spectral broadening of the generated optical pulses. We employ this approach to show arbitrary pulse length generation by applying step functions with only one V$\pi$ voltage, thus permitting direct pulse-on-demand generation of pulses with arbitrary pulse length, shape and repetition rate for applications in spectroscopy, sensing and nonlinear imaging.},
}
Lei Fu, Xiao-Xuan Liang, Sijia Wang, Siqi Wang, Ping Wang, Zhenxi Zhang, Jing Wang, Alfred Vogel, and Cuiping Yao,
Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls, Ultrasonics Sonochemistry , vol. 101, pp. 106664, 2023.
DOI:https://doi.org/10.1016/j.ultsonch.2023.106664
Datei: S1350417723003760
Bibtex: BibTeX
@article{FU2023106664,
title = {Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls},
journal = {Ultrasonics Sonochemistry},
volume = {101},
pages = {106664},
year = {2023},
issn = {1350-4177},
doi = {https://doi.org/10.1016/j.ultsonch.2023.106664},
url = {https://www.sciencedirect.com/science/article/pii/S1350417723003760},
author = {Lei Fu and Xiao-Xuan Liang and Sijia Wang and Siqi Wang and Ping Wang and Zhenxi Zhang and Jing Wang and Alfred Vogel and Cuiping Yao},
keywords = {Laser-induced cavitation, Partial confinement, Acoustic feedback, Elastic wall, Vibrations, Extended Rayleigh-Plesset model},
abstract = {We investigated laser-induced cavitation dynamics in a small container with elastic thin walls and free or partially confined surface both experimentally and by numerical investigations. The cuvette was only 8–25 times larger than the bubble in its center. The liquid surface was either free, or two thirds were confined by a piston-shaped pressure transducer. Different degrees of confinement were realized by filling the liquid up to the transducer surface or to the top of the cuvette. For reference, some experiments were performed in free liquid. We recorded the bubble dynamics simultaneously by high-speed photography, acoustic measurements, and detection of probe beam scattering. Simultaneous single-shot recording of radius-time curves and oscillation times enabled to perform detailed investigations of the bubble dynamics as a function of bubble size, acoustic feedback from the elastic walls, and degree of surface confinement. The bubble dynamics was numerically simulated using a Rayleigh-Plesset model extended by terms describing the acoustically mediated feedback from the bubble’s environment. Bubble oscillations were approximately spherical as long as no secondary cavitation by tensile stress occurred. Bubble expansion was always similar to the dynamics in free liquid, and the environment influenced mainly the collapse phase and subsequent oscillations. For large bubbles, strong confinement led to a slight reduction of maximum bubble size and to a pronounced reduction of the oscillation time, and both effects increased with bubble size. The joint action of breakdown-induced shock wave and bubble expansion excites cuvette wall vibrations, which produce alternating pressure waves that are focused onto the bubble. This results in a prolongation of the collapse phase and an enlargement of the second oscillation, or in time-delayed re-oscillations. The details of the bubble dynamics depend in a complex manner on the degree of surface confinement and on bubble size. Numerical simulations of the first bubble oscillation agreed well with experimental data. They suggest that the alternating rarefaction/compression waves from breakdown-induced wall vibrations cause a prolongation of the first oscillation. By contrast, liquid mass movement in the cuvette corners result in wall vibrations causing late re-oscillations. The strong and rich interaction between the bubble and its surroundings may be relevant for a variety of applications such as intraluminal laser surgery and laser-induced cavitation in microfluidics.}
}