2020
Claus
von der Burchard,
Moritz
Moltmann,
Jan
Tode,
Christoph
Ehlken,
Helge
Sudkamp,
Dirk
Theisen-Kunde,
Inke R.
König,
Gereon
Hüttmann, and
Johann
Roider,
Self-examination low-cost full-field OCT (SELFF-OCT) for patients with various macular diseases, Graefe's Archive for Clinical and Experimental Ophthalmology , Dez. 2020.
Self-examination low-cost full-field OCT (SELFF-OCT) for patients with various macular diseases, Graefe's Archive for Clinical and Experimental Ophthalmology , Dez. 2020.
Datei: | s00417-020-05035-6 |
Bibtex: | ![]() @article{von-derBurchard2020, author = {von der Burchard, C;Moltmann, M.;Tode, J;Ehlken, C;Sudkamp, H;Theisen-Kunde, D;König, I;Hüttmann, G and Roider, J}, title = {Self-examination low-cost full-field OCT (SELFF-OCT) for patients with various macular diseases}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology}, ISSN = {1435-702X}, url = {https://doi.org/10.1007/s00417-020-05035-6}, year = {2020}, type = {Journal Article} } |
Mark
Schmidt,
Christin
Grill,
Robert
Huber, and
Christian
Jirauschek,
Coherence of Fourier Domain Mode-Locked (FDML) Lasers in the Ultra-Stable Regime, in 2020 International Conference Laser Optics (ICLO) , Nov.2020. pp. 1-1.
Coherence of Fourier Domain Mode-Locked (FDML) Lasers in the Ultra-Stable Regime, in 2020 International Conference Laser Optics (ICLO) , Nov.2020. pp. 1-1.
DOI: | 10.1109/ICLO48556.2020.9285488 |
Bibtex: | ![]() @INPROCEEDINGS{Schmidt2020ICLO, author={M. {Schmidt}, C. {Grill}, R. {Huber} and C. {Jirauschek}}, booktitle={2020 International Conference Laser Optics (ICLO)}, title={Coherence of Fourier Domain Mode-Locked (FDML) Lasers in the Ultra-Stable Regime}, year={2020}, keywords={AG-Huber_FDML}, volume={}, number={}, pages={1-1}, doi={10.1109/ICLO48556.2020.9285488}, } |
Tom
Pfeiffer,
Madita
Göb,
Wolfgang
Draxinger,
Sebastian
Karpf,
Jan Philip
Kolb, and
Robert
Huber,
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
DOI: | 10.1364/BOE.402477 |
Bibtex: | ![]() @article{Pfeiffer:20, author = {T. Pfeiffer, M. G\"{o}b, W. Draxinger, S. Karpf, J.P. Kolb and R. Huber}, journal = {Biomed. Opt. Express}, keywords = {AG-Huber_OCT; High speed imaging; Image quality; Optical coherence tomography; Swept lasers; Swept sources; Systems design}, number = {11}, pages = {6799--6811}, publisher = {OSA}, title = {Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging}, volume = {11}, month = {Nov}, year = {2020}, doi = {10.1364/BOE.402477}, abstract = {In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to \&\#x223C;100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121\&\#x00A0;dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.}, } |
Elisabeth
Richert,
Claus
von der Burchard,
Alexa
Klettner,
Patrik
Arnold,
Ralph
Lucius,
Ralf
Brinkmann,
Johann
Roider, and
Jan
Tode,
Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models, 09 2020.
Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models, 09 2020.
Datei: | S2590153220300112 |
Bibtex: | ![]() @article{RN5351, author = {Richert, E;von der Burchard, C;Klettner, A;Arnold, P;Lucius, R;Brinkmann, R;Roider, J and Tode, J}, title = {Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models}, journal = {Cytokine: X}, volume = {2}, number = {3}, pages = {100031}, ISSN = {2590-1532}, DOI = {https://doi.org/10.1016/j.cytox.2020.100031}, url = {https://www.sciencedirect.com/science/article/pii/S2590153220300112}, year = {2020}, type = {Journal Article} } |
Matthias
Strauch,
Jan Philip
Kolb,
Daniel
Weng,
Melanie
Wacker,
Wolfgang
Draxinger,
Nadine
Merg,
Jennifer
Hundt,
Sebastian
Karpf, and
Robert
Huber,
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Weblink: | https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf |
Bibtex: | ![]() @InProceedings{Strauch2020, author = {M. Strauch, J.P. Kolb, D. Weng, M. Wacker, W. Draxinger, N. Merg, J. Hundt, S. Karpf and R. Huber}, booktitle = {104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie}, title = {Two-photon microscopy for sectioning-free virtual {H&E} imaging}, URL = {https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf}, year = {2020}, keywords = {AG-Huber_NL}, } |
Mark
Schmidt,
Tom
Pfeiffer,
Christin
Grill,
Robert
Huber, and
Christian
Jirauschek,
Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers, OSA Continuum , vol. 3, no. 6, pp. 1589--1607, 06 2020. Optical Society of America.
Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers, OSA Continuum , vol. 3, no. 6, pp. 1589--1607, 06 2020. Optical Society of America.
DOI: | 10.1364/OSAC.389972 |
Bibtex: | ![]() @article{schmidt2020self, title={Self-stabilization mechanism in ultra-stable Fourier domain mode-locked (FDML) lasers}, author={M. {Schmidt}, T. {Pfeiffer}, C. {Grill}, R. {Huber} and C. {Jirauschek}}, journal={OSA Continuum}, volume={3}, number={6}, pages={1589--1607}, year={2020}, keywords={AG-Huber_FDML}, url={https://doi.org/10.1364/OSAC.389972}, publisher= {Optical Society of America} } |
Matthias Strauch,
Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses, Delft University of Technology, Delft, 03 2020.
Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses, Delft University of Technology, Delft, 03 2020.
DOI: | 10.4233/uuid:b61aa64e-cba4-44c0-8d16-93440e028611 |
Bibtex: | ![]() @PhdThesis{Strauch2020, author = {M. Strauch}, title = {Tunable Optics: Spectral Imaging and Surface Manipulation on Liquid Lenses}, institution = {Delft University of Technology}, year = {2020}, date = {2020-03-30}, type = {phdthesis}, subtitle = {Spectral Imaging and Surface Manipulation on Liquid Lenses}, language = {English}, isbn = {978-94-028-1994-6}, pagetotal = {151}, doi = {10.4233/uuid:b61aa64e-cba4-44c0-8d16-93440e028611}, abstract = {This thesis focusses on two aspects of tunable optics: Fabry-P{\'e}rot interferometers with a variable distance between their mirrors and electrowetting liquid lenses. The need for a device to detect child abuse has motivated us to design and build a camera that can detect the chemical composition of the upper skin layers of a bruise using a self-made Fabry-P{\'e}rot interferometer. The research described in the first part of this thesis has shown that wide-angle spectral imaging can be achieved with compact and cost-effective cameras using Fabry-P{\'e}rot interferometers. Designs with a full field of 90° in which the Fabry-P{\'e}rot interferometer is mounted either in front of an imaging system or behind a telecentric lens system are presented and analysed. The dependency of the spectral resolution on the numerical aperture of the lens system is derived and its value as a design criterion is shown. It is shown that the telecentric camera design is preferable over the collimated design for bruise imaging with a Fabry-P{\'e}rot interferometer.The idea to use a liquid lens for spectral imaging has directed the research towards a new concept of controlling surface waves on the surface of a liquid lens. We investigate and model surface waves because they decrease the imaging quality during fast focal switching. We propose a model that describes the surface modes appearing on a liquid lens and that predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using geometrical optics and Fresnel propagation, and the model is verified experimentally. The model of the surface oscillations is used to develop a technique to create aspheric surface shapes on commercially available electrowetting liquid lenses. The surface waves on the liquid lens are described by Bessel functions of which a linear combination can be used to create any circularly symmetrical aspheric lens shape at an instant of time. With these surface profiles, one can realise a large set of circularly symmetrical wavefronts and hence intensity distributions of beams transmitted by the lens. The necessary liquid lens actuation to achieve a desired shape is calculated via a Hankel transform and confirmed experimentally. The voltage signal can be repeated at video rate. Measurements taken with a Mach-Zehnder interferometer confirm the model of the surface waves. The capabilities and limitations of the proposed method are demonstrated using the examples of a Bessel surface, spherical aberration, an axicon, and a top hat structure.}, keywords = {AG-Huber}, address = {Delft}, publisher = {Delft University of Technology}, school = {Delft University of Technology}, } |
Christin
Grill,
Simon
Lotz,
Torben
Blömker,
Dominic
Kastner,
Tom
Pfeiffer,
Mark
Schmidt,
Wolfgang
Draxinger,
Christian
Jirauschek, and
Robert
Huber,
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
DOI: | 10.1117/12.2545794 |
Bibtex: | ![]() @inproceedings{Grill2020, author = {C. {Grill}, S. {Lotz}, T. {Blömker}, D. {Kastner}, T. {Pfeiffer}, S. {Karpf}, M. {Schmidt}, W. {Draxinger}, C. {Jirauschek} and R. {Huber}}, title = {{Beating of two FDML lasers in real time}}, volume = {11260}, booktitle = {Fiber Lasers XVII: Technology and Systems}, editor = {Liang Dong}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {132 -- 138}, keywords = {AG-Huber_FDML, FDML laser, fiber lasers, beat signal, OCT, Optical Coherence Tomography, Fourier domain mode locking}, year = {2020}, doi = {10.1117/12.2545794}, } |
Paul
Strenge,
Birgit
Lange,
Christin
Grill,
Wolfgang
Draxinger,
Matteo M.
Bonsanto,
Christian
Hagel,
Robert
Huber, and
Ralf
Brinkmann,
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
DOI: | 10.1117/12.2545659 |
Bibtex: | ![]() @inproceedings{Strenge2020, author = {P. Strenge and B. Lange and C. Grill and W. Draxinger and M. M. Bonsanto and C. Hagel and R. Huber and R. Brinkmann}, title = {{Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis}}, volume = {11228}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {82 -- 89}, keywords = {AG-Huber_OCT, Optical coherence tomography, OCT, FDML Laser, MHz-OCT, brain tumor, brain imaging, neurosurgery}, year = {2020}, URL = { https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11228/112282O/Segmented-OCT-data-set-for-depth-resolved-brain-tumor-detection/10.1117/12.2545659.short} } |
Leonardo
Cecchetti,
Tianshi
Wang,
Ayla
Hoogendoorn,
Karen T.
Witberg,
Jurgen M. R.
Lighthart,
Joost
Daemen,
Heleen
van Beusekom,
Tom
Pfeiffer,
Robert
Huber,
Jolanda
Wentzel,
Antonius F. W.
van der Steen, and
Gijs
van Soest,
In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT, The International Journal of Cardiovascular Imaging , vol. 36, no. 6, pp. 1021-1029, 02 2020. Springer Science and Business Media LLC.
In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT, The International Journal of Cardiovascular Imaging , vol. 36, no. 6, pp. 1021-1029, 02 2020. Springer Science and Business Media LLC.
DOI: | 10.1007/s10554-020-01796-7 |
Bibtex: | ![]() @article{Cecchetti2020, doi = {10.1007/s10554-020-01796-7}, url = {https://doi.org/10.1007/s10554-020-01796-7}, year = {2020}, month = feb, publisher = {Springer Science and Business Media {LLC}}, volume = {36}, number = {6}, pages = {1021--1029}, author = {Leonardo Cecchetti and Tianshi Wang and Ayla Hoogendoorn and Karen T. Witberg and Jurgen M. R. Ligthart and Joost Daemen and Heleen M. M. van Beusekom and Tom Pfeiffer and Robert A. Huber and Jolanda J. Wentzel and Antonius F. W. van der Steen and Gijs van Soest}, title = {In-vitro and in-vivo imaging of coronary artery stents with Heartbeat {OCT}}, journal = {The International Journal of Cardiovascular Imaging} } |
Hartmut
Schneider,
Martin
Ahrens,
Michaela
Strumpski,
Claudia
Rüger,
Matthias
Häfer,
Gereon
Hüttmann,
Dirk
Theisen-Kunde,
Hinnerk
Schulz-Hildebrandt, and
Rainer
Haak,
An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations, J Clin Med , vol. 9(10), 2020.
An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations, J Clin Med , vol. 9(10), 2020.
DOI: | 10.3390/jcm9103257 |
Bibtex: | ![]() @article{schneider2020, author = {Schneider, H.;Ahrens, M.;Strumpski, M.;Ruger, C.;Hafer, M.;Huettmann, G.;Theisen-Kunde, D.;Schulz-Hildebrandt, H. and Haak, R.}, title = {An Intraoral OCT Probe to Enhanced Detection of Approximal Carious Lesions and Assessment of Restorations}, journal = {J Clin Med}, volume = {9(10)}, keywords = {OCT; intraoral probe; carious lesions; caries diagnosis; dental restorations}, ISSN = {2077-0383 (Print) 2077-0383 (Linking)}, DOI = {10.3390/jcm9103257}, year = {2020}, type = {Journal Article} } |
Yoko Miura,
Retinal Pigment Epithelium Organ Culture, in Retinal Pigment Epithelium in Health and Disease , Springer, 2020, pp. 307-324.
Retinal Pigment Epithelium Organ Culture, in Retinal Pigment Epithelium in Health and Disease , Springer, 2020, pp. 307-324.
Datei: | 978-3-030-28384-1_18 |
Bibtex: | ![]() @inbook{Miura2020, author = {Miura, Yoko}, title = {Retinal Pigment Epithelium Organ Culture}, booktitle = {Retinal Pigment Epithelium in Health and Disease}, publisher = {Springer}, pages = {307-324}, year = {2020}, type = {Book Section}, URL = { https://link.springer.com/chapter/10.1007/978-3-030-28384-1_18} } |
Y.
Hirayama,
Shigeru
Honda,
Kumiko
Hirayama,
Manabu
Yamamoto,
Takeya
Kohno,
Akika
Kyo,
Dirk
Theisen-Kunde,
Ralf
Brinkmann, and
Yoko
Miura,
Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome, Graefes Arch Clin Exp Ophthalmol , vol. 259, pp. 387-393, 2020.
Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome, Graefes Arch Clin Exp Ophthalmol , vol. 259, pp. 387-393, 2020.
DOI: | 10.1007/s00417-020-04931-1 |
Bibtex: | ![]() @article{Hirayama2020, author = {Hirayama, K.;Yamamoto, M.;Kohno, T.;Kyo, A.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.}, title = {Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome}, journal = {Graefes Arch Clin Exp Ophthalmol}, ISSN = {0721-832x}, volume = {259}, pages = {387-393}, DOI = {10.1007/s00417-020-04931-1}, year = {2020}, type = {Journal Article} } |
Manabu
Yamamoto,
Yoko
Miura,
Akika
Kyo,
Kumiko
Hirayama,
Takeya
Kohno,
Dirk
Theisen-Kunde,
Ralf
Brinkmann, and
Shigeru
Honda,
Selective retina therapy for subretinal fluid associated with choroidal nevus, Amer J Ophthalm Case Rep , vol. 19, pp. 100794, 2020.
Selective retina therapy for subretinal fluid associated with choroidal nevus, Amer J Ophthalm Case Rep , vol. 19, pp. 100794, 2020.
DOI: | https://doi.org/10.1016/j.ajoc.2020.100794 |
Bibtex: | ![]() @article{yamamoto2020, author = {Yamamoto, M;Miura, Y;Kyo, A;Hirayama, K;Kohno, T;Theisen-Kunde, D;Brinkmann, R and Honda, S}, title = {Selective retina therapy for subretinal fluid associated with choroidal nevus}, journal = {Amer J Ophthalm Case Rep}, volume = {19}, pages = {100794}, ISSN = {2451-9936}, keywords = {Laser therapy, Choroidal tumor, Retinal pigment epithelium, Retinal disorder}, DOI = {https://doi.org/10.1016/j.ajoc.2020.100794}, year = {2020}, type = {Journal Article} } |
Antonio
López-Marín,
Geert
Springeling,
Robert
Beurskens,
Heleen
van Beusekom,
Antonius F. W.
van der Steen,
Arjun D.
Koch,
Brett E.
Bouma, and
Tianshi
Wang,
Shadow-free motorized capsule enables accurate beam positioning and sectorized OCT imaging of the esophagus, in Endoscopic Microscopy XV , International Society for Optics and Photonics, 2020. pp. 112140O.
Shadow-free motorized capsule enables accurate beam positioning and sectorized OCT imaging of the esophagus, in Endoscopic Microscopy XV , International Society for Optics and Photonics, 2020. pp. 112140O.
Datei: | 12.2545689 |
Bibtex: | ![]() @inproceedings{Lopez2020, author = {López-Marín, Antonio;Springeling, Geert;Beurskens, Robert;Van Beusekom, Heleen;van der Steen, Antonius;Koch, Arjun D;Bouma, Brett E;Huber, Robert A;Van Soest, Gijs and Wang, Tianshi}, title = {Shadow-free motorized capsule enables accurate beam positioning and sectorized OCT imaging of the esophagus}, booktitle = {Endoscopic Microscopy XV}, publisher = {International Society for Optics and Photonics}, volume = {11214}, pages = {112140O}, url = { https://doi.org/10.1117/12.2545689}, type = {Conference Proceedings} } |
R R Wertheimer,
Refractive Changes After Corneal Stromal Filler Injection for the Correction of Hyperopia, J Refractive Surg , no. 6(36), pp. 406--413, 2020.
Refractive Changes After Corneal Stromal Filler Injection for the Correction of Hyperopia, J Refractive Surg , no. 6(36), pp. 406--413, 2020.
Datei: | refractive-changes-after-corneal-stromal-filler-injection-for-the-correction-of-hyperopia |
Bibtex: | ![]() @article{Wertheimer2020, author = {Wertheimer, C M; Brandt, K; Kaminsky, S; Elhardt, C; Kassumeh, S A; Pham, L; Schulz-Hildebrandt, H; Priglinger, S; Anderson, R R and Birngruber, R}, url = {https://www.healio.com/ophthalmology/journals/jrs/2020-6-36-6/%7B8e6aaf40-922c-4998-9c7b-39b47135ec61%7D/refractive-changes-after-corneal-stromal-filler-injection-for-the-correction-of-hyperopia}, journal = {J Refractive Surg}, number = {6(36)}, pages = {406--413}, title = {Refractive Changes After Corneal Stromal Filler Injection for the Correction of Hyperopia}, date = {2020-06-14}, year = {2020}, keywords ={mOCT, HSH} } |
Jalali,
Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates, Nature Communications , vol. 11(1), pp. 2062, 2020.
Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates, Nature Communications , vol. 11(1), pp. 2062, 2020.
Datei: | s41467-020-15618-w |
Bibtex: | ![]() @article{Karpf-2020, author = {S. Karpf, C.T. Riche, D. Di Carlo, A. Goel, W.A. Zeiger, A. Suresh, C. Portera-Cailliau B. and Jalali}, title = {Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates}, journal = {Nature Communications}, volume = {11(1)}, keywords={}, pages = {2062}, ISSN = {2041-1723}, url = {https://doi.org/10.1038/s41467-020-15618-w}, year = {2020}, type = {Journal Article} } |
G J. Elhardt,
Stromal Nerve Imaging and Tracking Using Micro-Optical Coherence Tomography, Translational Vision Science & Technology , vol. 9(5), pp. 6-6, 2020.
Stromal Nerve Imaging and Tracking Using Micro-Optical Coherence Tomography, Translational Vision Science & Technology , vol. 9(5), pp. 6-6, 2020.
Datei: | tvst.9.5.6 |
Bibtex: | ![]() @article{Birngruber2020, author = {Elhardt, C;Wertheimer, C M.;Wartak, A;Zhao, J;Leung, H M;Kassumeh, S A.;Yin, B;Tearney, G J. and Birngruber, R}, title = {Stromal Nerve Imaging and Tracking Using Micro-Optical Coherence Tomography}, journal = {Translational Vision Science & Technology}, volume = {9(5)}, pages = {6-6}, ISSN = {2164-2591}, Keywords = {optical coherence tomography; micro-OCT; imaging;corneal nerves; diabetes}, url = {https://doi.org/10.1167/tvst.9.5.6}, year = {2020}, type = {Journal Article} } |
G Deen,
Thermo-elastic optical coherence microscopy, in Proc.SPIE , International Society for Optics and Photonics, 2020. pp. 112520H.
Thermo-elastic optical coherence microscopy, in Proc.SPIE , International Society for Optics and Photonics, 2020. pp. 112520H.
DOI: | 10.1117/12.2550998 |
Datei: | 12.2550998 |
Bibtex: | ![]() @inproceedings{Deen2020, author = {Deen, A D;Pfeiffer, T;H, van Beusekom.;Essers, J;Huber, R;van der Steen, A.F.W.;van Soest, G and Wang, T}, title = {Thermo-elastic optical coherence microscopy}, booktitle = {Proc.SPIE}, volume = {11252}, abstarct = {The absorption of laser pulses by tissue leads not only to the generation of acoustic waves, but also to nanometer to sub-micrometer scale displacement. After the initial expansion, a quasi-steady state is achieved in a few microseconds. Previously we introduced the concept of thermo-elastic optical coherence tomography (TE-OCT) to \visualise" the rapid thermo-elastic expansion by measuring the Doppler phase shift rather than \listening" to the acoustic wave as in photoacoustic imaging. In this study, we built a microscopic setup for high-speed 3D TE-OCT imaging, by means of thermo-elastic optical coherence microscopy (TE-OCM). The repetition rate of pulsed laser was set to 100 Hz and the line rate of the OCT system is 1.5 MHz. The OCT beam and the laser pulse were focused upon the same location on the sample FWHM spot sizes of 300 m for the pulsed laser and 40 m FWHM for the OCT beam. For each laser pulse, an M-mode OCT image consisting of 90 A-lines was acquired. The Doppler phase shift was extracted by comparing the phase signal before and after the pulse arrival. Within 6 minutes, a 3D TE-OCM image (10 x 10 x 4 mm3) can be acquired and processed. Imaging experiments were carried out in swine meat using 1210 nm excitation wavelength to highlight lipid in tissue. The results show that no signicant displacement was detected in swine muscle while strong displacement was observed in lipid, owing to the optical absorption features. Furthermore, fatty tissue is easily identied in the 3D TE-OCM image while the conventional OCT images provides the structural information.}, pages = {112520H}, DOI = {10.1117/12.2550998}, url = {https://doi.org/10.1117/12.2550998}, type = {Conference Proceedings} } |
Tianshi
Wang,
Aaron Doug
Deen,
Heleen
van Beusekom, and
Antonius F. W.
van der Steen,
Thermo-elastic optical coherence microscopy, in Advanced Chemical Microscopy for Life Science and Translational Medicine , International Society for Optics and Photonics, 2020. pp. 112520H.
Thermo-elastic optical coherence microscopy, in Advanced Chemical Microscopy for Life Science and Translational Medicine , International Society for Optics and Photonics, 2020. pp. 112520H.
DOI: | https://doi.org/10.1117/12.2550998 |
Datei: | 12.2550998.short |
Bibtex: | ![]() @inproceedings{Deen2020, author = {Deen, Aaron Doug;Pfeiffer, Tom;Van Beusekom, Heleen;Essers, Jeroen;Huber, Robert;van der Steen, Antonius FW;Van Soest, Gijs and Wang, Tianshi}, title = {Thermo-elastic optical coherence microscopy}, booktitle = {Advanced Chemical Microscopy for Life Science and Translational Medicine}, publisher = {International Society for Optics and Photonics}, url = { https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11252/112520H/Thermo-elastic-optical-coherence-microscopy/10.1117/12.2550998.short} volume = {11252}, pages = {112520H}, type = {Conference Proceedings} } |
Sonja
Jäckle,
Veronica
Garcia-Vazquez,
Tim
Eixmann,
Florian
Matysiak,
Felix
von Haxthausen,
Malte Maria
Sieren,
Hinnerk
Schulz-Hildebrandt,
Gereon
Hüttmann,
Floris
Ernst,
Markus
Kleemann, and
Torben
Pätz,
Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair, Int J Comp Assis Radiology and Surgery , 2020.
Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair, Int J Comp Assis Radiology and Surgery , 2020.
ISBN: | 1861-6429 |
Datei: | s11548-020-02167-2 |
Bibtex: | ![]() @article{jackle2020, title = {Three-dimensional guidance including shape sensing of a stentgraft system for endovascular aneurysm repair}, author = {Jäckle,S; Garcia-Vazquez,V; Eixmann, T; Matysiak, F; von Haxthausen,F; Sieren; M m; Schulz-Hildebrandt, H; H\"{u}ttmann, G; Ernst, F; Kleemann, M and P\"{a}tz, T}, url = {https://doi.org/10.1007/s11548-020-02167-2}, isbn = {1861-6429}, year = {2020}, date = {2020-04-06}, journal = {Int J Comp Assis Radiology and Surgery}, abstract = {During endovascular aneurysm repair (EVAR) procedures, medical instruments are guided with two-dimensional (2D) fluoroscopy and conventional digital subtraction angiography. However, this requires X-ray exposure and contrast agent is used, and the depth information is missing. To overcome these drawbacks, a three-dimensional (3D) guidance approach based on tracking systems is introduced and evaluated.}, keywords = {HSH}, pubstate = {published}, tppubtype = {article} } |
J A.
Kilin, and
J-P
Wolf,
Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles, ACS Nano , vol. 14(4), pp. 4087-4095, 2020.
Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles, ACS Nano , vol. 14(4), pp. 4087-4095, 2020.
Datei: | acsnano.9b08813 |
Bibtex: | ![]() @article{Vogel-2020, author = {Kilin, V;Campargue, G;Fureraj, I;Sakong, S;Sabri, T;Riporto, F;Vieren, A;Mugnier, Y;Mas, C;Staedler, D;Collins, J M;Bonacina, L;Vogel, A;Capobianco, J A. and Wolf, J-P}, title = {Wavelength-Selective Nonlinear Imaging and Photo-Induced Cell Damage by Dielectric Harmonic Nanoparticles}, journal = {ACS Nano}, volume = {14(4)}, pages = {4087-4095}, ISSN = {1936-0851}, url = {https://doi.org/10.1021/acsnano.9b08813}, year = {2020}, type = {Journal Article} } |
Elisabeth
Richert,
Julia
Papenkort,
Alexa
Klettner,
Jan
Tode,
Stefan
Koinzer,
Ralf
Brinkmann,
Christine
Fink,
Thomas
Roeder,
Ralph
Lucius, and
Johann
Roider,
Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR), Lasers in Surgery and Medicine , 2020.
Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR), Lasers in Surgery and Medicine , 2020.
DOI: | DOI 10.1002/lsm.23288 |
Bibtex: | ![]() @article{Richert2020, author = {Richert, E;Papenkort, J;Klettner, A;Tode, J;Koinzer, S;Brinkmann, R;Fink, C;Roeder, T;Lucius, R. and Roider, J}, title = {Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR)}, journal = {Lasers in Surgery and Medicine}, Keywords = {age‐related macular degeneration; thermal stimulation therapy of the retinal pigment epithelium; matrix metalloproteases; pigment epithelium derived factor; retinal pigment epithelium; vascular endothelial growth factor; transforming growth factor‐β}, DOI = {DOI 10.1002/lsm.23288}, year = {2020}, type = {Journal Article} } |
S.
Freidank, and
N.
Linz,
Optical Vortex Beam for Gentle and Ultraprecise Intrastromal Corneal Dissection in Refractive Surgery, TVST , vol. 9(10), pp. 22-22, 2020.
Optical Vortex Beam for Gentle and Ultraprecise Intrastromal Corneal Dissection in Refractive Surgery, TVST , vol. 9(10), pp. 22-22, 2020.
Datei: | tvst.9.10.22 |
Bibtex: | ![]() @article{Freidank2020, author = {Freidank, S;Vogel, A and Linz, N}, title = {Optical Vortex Beam for Gentle and Ultraprecise Intrastromal Corneal Dissection in Refractive Surgery}, journal = {TVST}, volume = {9(10)}, pages = {22-22}, ISSN = {2164-2591}, url = {https://doi.org/10.1167/tvst.9.10.22}, year = {2020}, type = {Journal Article} } |
Manabu
Yamamoto,
Yoko
Miura,
Kumiko
Hirayama,
Takeya
Kohno,
Daijiro
Kabata,
Dirk
Theisen-Kunde,
Ralf
Brinkmann, and
Shigeru
Honda,
Predictive factors of outcome of selective retina therapy for diabetic macular edema, International Ophthalmology , 2020.
Predictive factors of outcome of selective retina therapy for diabetic macular edema, International Ophthalmology , 2020.
Datei: | s10792-020-01288-6 |
Bibtex: | ![]() @article{Miura2020-2, author = {Yamamoto, M;Miura, Y;Hirayama, K;;Kohno, T;Kabata, D;Theisen-Kunde, D;Brinkmann, R and Honda, S;}, title = {Predictive factors of outcome of selective retina therapy for diabetic macular edema}, journal = {International Ophthalmology}, ISSN = {1573-2630}, url = {https://doi.org/10.1007/s10792-020-01288-6}, year = {2020}, type = {Journal Article} } |
Michael
Münter,
Mario
Pieper,
Malte
Casper,
Martin
Ahrens,
Tabea
Kohlfaerber,
Ramtin
Rahmanzadeh,
Peter
König,
Gereon
Hüttmann, and
Hinnerk
Schulz-Hildebrandt,
Dynamic contrast in scanning microscopic OCT, Optic Letters , 2020.
Dynamic contrast in scanning microscopic OCT, Optic Letters , 2020.
Datei: | 2003.00006 |
Bibtex: | ![]() @article{Münter2020, author = {Münter, M;Endt, M v;Pieper, M;Casper, M;Ahrens, M;Kohlfaerber, T;Rahmanzadeh, R;König, P;Hüttmann, G and Schulz-Hildebrandt, H}, title = {Dynamic contrast in scanning microscopic OCT}, journal = {Optic Letters}, url = {https://arxiv.org/abs/2003.00006}, year = {2020}, type = {Journal Article} } |
Cuiping
Yao,
Florian
Rudnitzki,
Yida
He,
Zhenxi
Zhang,
Gereon
Hüttmann, and
Ramtin
Rahmanzadeh,
Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods, JBio , 2020.
Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods, JBio , 2020.
DOI: | 10.1002/jbio.202000017 |
Bibtex: | ![]() @article{Rahmanzadeh-2020, author = {Yao, C;Rudnitzki, F;He, Y;Zhang, Z;Hüttmann, G and Rahmanzadeh, R}, title = {Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods}, journal = {JBio}, ISSN = {1864-063X}, DOI = {10.1002/jbio.202000017}, Year = {2020}, type = {Journal Article} } |
Markus
Luecking,
Ralf
Brinkmann,
Scarlett
Ramos,
Wilhelm
Stork, and
Nico
Heussner,
Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage, CompBioMed , vol. 122, pp. 103835, 2020.
Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage, CompBioMed , vol. 122, pp. 103835, 2020.
DOI: | https://doi.org/10.1016/j.compbiomed.2020.103835 |
Bibtex: | ![]() @article{brinkmann2020-2, author = {Luecking, M;Brinkmann, R;Ramos, Sc;Stork, W and Heussner, N}, title = {Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage}, journal = {CompBioMed}, volume = {122}, pages = {103835}, ISSN = {0010-4825}, DOI = {https://doi.org/10.1016/j.compbiomed.2020.103835}, year = {2020}, type = {Journal Article} } |
Asylkhan E.
Rakhymzhan,
Lucie
Reuter,
Raphael
Raspe,
Daniel
Bremer,
Judith
Heidelin,
Volker
Andresen,
Robert
Günther,
Ruth
Leben,
Sergey
Cheremukhin,
Hinnerk
Schulz-Hildebrandt,
Maria G.
Bixel,
Ralf H.
Adams,
Helena
Radbruch,
Gereon
Hüttmann,
Anja E.
Hauser, and
Raluca A.
Niesner,
Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging, Cytometry Part A , vol. 97, no. 5, pp. 515-527, 2020.
Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging, Cytometry Part A , vol. 97, no. 5, pp. 515-527, 2020.
DOI: | 10.1002/cyto.a.24012 |
Bibtex: | ![]() @article{Schulz-Hildebrandt-2020, author = {Rakhymzhan, A;Reuter, L;Raspe, R;Bremer, D;Günther, R;Leben, R;Heidelin, J;Andresen, V;Cheremukhin, S;Schulz-Hildebrandt, H;Bixel, M G.;Adams, R H.;Radbruch, H;Hüttmann, G;Hauser, A E. and Niesner, R A.}, title = {Coregistered Spectral Optical Coherence Tomography and Two-Photon Microscopy for Multimodal Near-Instantaneous Deep-Tissue Imaging}, year = {2020}, journal = {Cytometry Part A}, volume = {97}, number = {5}, pages={515-527}, ISSN = {1552-4922}, DOI = {10.1002/cyto.a.24012}, type = {Journal Article} } |
R. R. Kassumeh,
Corneal Stromal Filler Injection as a Novel Approach to Correct Presbyopia—An Ex Vivo Pilot Study, TVST , vol. 9(7), pp. 30-30, 2020.
Corneal Stromal Filler Injection as a Novel Approach to Correct Presbyopia—An Ex Vivo Pilot Study, TVST , vol. 9(7), pp. 30-30, 2020.
Datei: | tvst.9.7.30 |
Bibtex: | ![]() @article{Kassumeh2020, author = {Kassumeh, S;Luther, J K.;Wertheimer, C M.;Brandt, K;Schenk, M S.;Priglinger, S G.;Wartak, A;Apiou-Sbirlea, G.;Anderson, R. R. and Birngruber, R}, title = {Corneal Stromal Filler Injection as a Novel Approach to Correct Presbyopia—An Ex Vivo Pilot Study}, journal = {TVST}, volume = {9(7)}, keywords = { presbyopia correction; corneal filler; refractive surgery; femtosecond laser; hyaluronic acid; bifocality}, pages = {30-30}, ISSN = {2164-2591}, url = {https://doi.org/10.1167/tvst.9.7.30}, year = {2020}, type = {Journal Article} } |
Vasily
Matkivsky,
Alexander
Moiseev,
Pavel
Shilyagin,
Alexander
Rodionov,
Hendrik
Spahr,
Clara
Pfäffle,
Gereon
Hüttmann,
Dierck
Hillmann, and
Grigory
Gelikonov,
Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function, Journal of Biophotonics , vol. 13(10), pp. e202000112, 2020.
Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function, Journal of Biophotonics , vol. 13(10), pp. e202000112, 2020.
DOI: | 10.1002/jbio.202000112 |
Bibtex: | ![]() @article{Matkivsky2020, author = {Matkivsky, V;Moiseev, A;Shilyagin, P;Rodionov, A;Spahr, H;Pfäffle, C;Hüttmann, G;Hillmann, D and Gelikonov, G}, title = {Determination and correction of aberrations in full field optical coherence tomography using phase gradient autofocus by maximizing the likelihood function}, journal = {Journal of Biophotonics}, volume = {13(10)}, pages = {e202000112}, ISSN = {1864-063X}, DOI = {10.1002/jbio.202000112}, year = {2020}, type = {Journal Article} } |
A
Holzhey, and
Mahdy
Ranjbar,
Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss, Journal of visualized experiments: JoVE , no. 158, 2020.
Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss, Journal of visualized experiments: JoVE , no. 158, 2020.
DOI: | 10.3791/60542 |
Bibtex: | ![]() @article{Holzhey2020, author = {Holzhey, A;Sonntag, S;Rendenbach, J;Ernesti, J S;Kakkassery, V;Grisanti, S;Reinholz, F;Freidank, S;Vogel, A and Ranjbar, M}, title = {Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss}, journal = {Journal of visualized experiments: JoVE}, number = {158}, ISSN = {1940-087X}, DOI = {10.3791/60542 }, year = {2020}, type = {Journal Article} } |
Elisabeth
Richert,
Sofya
Bartsch,
Jost
Hillenkamp,
Felix
Treumer,
Jan
Tode,
Claus
von der Burchard,
Ralf
Brinkmann,
Alexa
Klettner, and
Johann
Roider,
Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums, Klin Monatsbl Augenheilkd , vol. 237(02), pp. 192-201, 2020.
Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums, Klin Monatsbl Augenheilkd , vol. 237(02), pp. 192-201, 2020.
DOI: | 10.1055/a-0838-5633 |
Datei: | a-0838-5633 |
Bibtex: | ![]() @article{Brinkmann2020, author = {Richert, E;Bartsch, S;Hillenkamp, J;Treumer, F;Tode, J;von der Burchard, C;Brinkmann, R;Klettner, A K and Roider, J}, title = {Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums}, journal = {Klin Monatsbl Augenheilkd}, volume = {237(02)}, pages = {192-201}, ISSN = {0023-2165}, DOI = {10.1055/a-0838-5633}, year = {2020}, type = {Journal Article} } |
Matthias
Müller,
Ramtin
Rahmanzadeh,
Thao
Tran,
Jan
Kappelhoff,
Eman Aburieda
Akam,
Peter
Caravan,
Thomas
Jüstel,
Kathryn D
Held,
R.Rox
Anderson, and
Martin
Purschke,
Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells, Particle and Particle Systems Characterization , 2020.
Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells, Particle and Particle Systems Characterization , 2020.
DOI: | 10.1002/ppsc.202000201 |
Datei: | 0 |
Bibtex: | ![]() @article{Müller2020, author = {Müller M;Rahmanzadeh R;Tran T;Kappelhoff J;Akam EA;Caravan P;Jüstel T;Held KD;Anderson R and M, and Purschke}, title = {Particle size of X-ray pumped UVC emitting nanoparticles defines intracellular localization and biological activity against cancer cells}, journal = {Particle and Particle Systems Characterization }, year = {2020}, type = {Journal Article}, url = { https://onlinelibrary.wiley.com/toc/15214117/0/0} } |
Matthias
Strauch,
Jan Philip
Kolb,
Nadine
Merg,
Jennifer
Hundt,
Sebastian
Karpf, and
Robert
Huber,
Evaluation of two-photon fluorescence microscopy for sectioning-free H&E imaging of different tissues, in 32nd Congress of the ESP and XXXIII International Congress of the IAP , 2020.
Evaluation of two-photon fluorescence microscopy for sectioning-free H&E imaging of different tissues, in 32nd Congress of the ESP and XXXIII International Congress of the IAP , 2020.
DOI: | 10.1007/s00428-020-02938-x |
Bibtex: | ![]() @InProceedings{Strauch2020a, author = {M. Strauch, J.P. Kolb, N. Merg, J. Hundt, S. Karpf and R. Huber}, booktitle = {32nd Congress of the ESP and XXXIII International Congress of the IAP}, title = {Evaluation of two-photon fluorescence microscopy for sectioning-free {H&E} imaging of different tissues}, year = {2020}, keywords = {AG-Huber_NL}, } |
Tobias
Fischer,
Antje
Klinger,
Dorthe
Smolinski,
Regina
Orzekowsky-Schröder,
Falk
Nitzsche,
Alfred
Vogel,
Gereon
Hüttmann, and
Andreas
Gebert,
High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures, Cell and Tissue Research , pp. 1-8, 2020.
High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures, Cell and Tissue Research , pp. 1-8, 2020.
Datei: | s00441-020-03167-z |
Bibtex: | ![]() @article{Fischer2020, author = {Fischer, T;Klinger, A;von Smolinski, D;Orzekowsky-Schroeder, R;Nitzsche, F;Bölke, T;Vogel, A;Hüttmann, G and Gebert, A}, title = {High-resolution imaging of living gut mucosa: lymphocyte clusters beneath intestinal M cells are highly dynamic structures}, journal = {Cell and Tissue Research}, pages = {1-8}, ISSN = {1432-0878}, url = {https://doi.org/10.1007/s00441-020-03167-z}, year = {2020}, type = {Journal Article} } |
G
Pieper, and
P
K\"{o}nig,
Intravital microscopic optical coherence tomography imaging to assess mucus mobilizing interventions for muco-obstructive lung disease in mice, American Journal of Physiology-Lung Cellular and Molecular Physiology , vol. 318, no. 3, pp. 518-524, 2020. American Physiological Society Rockville, MD.
Intravital microscopic optical coherence tomography imaging to assess mucus mobilizing interventions for muco-obstructive lung disease in mice, American Journal of Physiology-Lung Cellular and Molecular Physiology , vol. 318, no. 3, pp. 518-524, 2020. American Physiological Society Rockville, MD.
DOI: | 10.1152/ajplung.00287.2019 |
Bibtex: | ![]() @article{pieper2020intravital, title = {Intravital microscopic optical coherence tomography imaging to assess mucus mobilizing interventions for muco-obstructive lung disease in mice}, author = {Pieper,P; Schulz-Hildebrandt, H; Mall,Marcus A; H\"{u}ttmann, G and K\"{o}nig, P}, doi = {10.1152/ajplung.00287.2019}, year = {2020}, date = {2020-02-26}, journal = {American Journal of Physiology-Lung Cellular and Molecular Physiology}, volume = {318}, number = {3}, pages = {518-524}, publisher = {American Physiological Society Rockville, MD}, abstract = {Airway mucus obstruction is a hallmark of chronic lung diseases such as cystic fibrosis, asthma and COPD, and the development of more effective mucus mobilizing therapies remains an important unmet need for patients with these muco-obstructive lung diseases. However, methods for sensitive visualization and quantitative assessment of immediate effects of therapeutic interventions on mucus clearance in vivo are lacking. In this study, we determined if newly developed high-speed microscopic optical coherence tomography (mOCT) is sensitive to detect and compare in vivo effects of inhaled isotonic saline, hypertonic saline and bicarbonate on mucus mobilization and clearance in Scnn1b-transgenic mice with muco-obstructive lung disease. In vivomOCT imaging showed that inhaled isotonic saline-induced rapid mobilization of mucus that was mainly transported as chunks from the lower airways of Scnn1b-transgenic mice. Hypertonic saline mobilized a significantly greater amount of mucus that showed a more uniform distribution compared to isotonic saline. Addition of bicarbonate to isotonic saline had no effect on mucus mobilization, but also led to a more uniform mucus layer compared to treatment with isotonic saline alone. mOCT can detect differences in response to mucus mobilizing interventions in vivo, and may thus support the development of more effective therapies for patients with muco-obstructive lung diseases.}, keywords = {mOCT,OCT}, pubstate = {published}, tppubtype = {article} } |
Viktoria
Kleymann,
Hannaes
Gernandt,
Karl
Worthmann,
Hossam S.
Abbas,
Ralf
Brinkmann, and
Matthias A.
Müller,
Modeling parameter for temperature controlled retinal laser therapies, DeGruyter-at-Automatisierungstechnik , vol. 68(11), pp. 953-966, 2020.
Modeling parameter for temperature controlled retinal laser therapies, DeGruyter-at-Automatisierungstechnik , vol. 68(11), pp. 953-966, 2020.
Datei: | article-p953.xml |
Bibtex: | ![]() @article{Kleymann2020, author = {Kleymann, V;Gernandt, H;Worthmann, K;Hossam, S.A;Brinkmann, R and Müller, A.M}, title = {Modeling parameter for temperature controlled retinal laser therapies }, journal = {DeGruyter-at-Automatisierungstechnik}, volume = {68(11)}, keywords = {retinal photocoagulation, parametric model order reduction, identification}, pages = {953-966}, URL = {https://www.degruyter.com/view/journals/auto/68/11/article-p953.xml}, year = {2020}, type = {Journal Article} } |
M
Palczewska, and
K
Palczewski,
Noninvasive two-photon optical biopsy of retinal fluorophores, Proceedings of the National Academy of Sciences , pp. 202007527, 2020.
Noninvasive two-photon optical biopsy of retinal fluorophores, Proceedings of the National Academy of Sciences , pp. 202007527, 2020.
DOI: | 10.1073/pnas.2007527117 |
Bibtex: | ![]() @article{Palczewska-2020, title = {Noninvasive two-photon optical biopsy of retinal fluorophores}, author = {Palczewska, G;Boguslawski, J;Stremplewski, P;Kornaszewski, L;Zhang, J;Dong, Z;Liang, Xiao-Xuan;Gratton, E;Vogel, A;Wojtkowski, M and Palczewski, K}, year = 2020, journal = {Proceedings of the National Academy of Sciences}, pages = 202007527, doi = {10.1073/pnas.2007527117}, type = {Journal Article} } |
B L
Ibey, and
N.
Linz,
Optical Interactions with Tissue and Cells XXXI, in Proc. of SPIE Vol , 2020. pp. 1123801-1.
Optical Interactions with Tissue and Cells XXXI, in Proc. of SPIE Vol , 2020. pp. 1123801-1.
DOI: | 10.1117/12.2569811 |
ISBN: | ISBN: 9781510632394 |
Bibtex: | ![]() @inproceedings{Linz2020, author = {Ibey, B L and Linz, N}, title = {Optical Interactions with Tissue and Cells XXXI}, booktitle = {Proc. of SPIE Vol}, volume = {11238}, pages = {1123801-1}, year = {2020}, ISBN = {ISBN: 9781510632394}, DOI = {10.1117/12.2569811}, type = {Conference Proceedings} } |
Paula
Enzian,
Christian
Schell,
Astrid
Link,
Carina
Malich,
Ralph
Pries,
Barbara
Wollenberg, and
Ramtin
Rahmanzadeh,
Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH, Molecular Pharmaceutics , 2020.
Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH, Molecular Pharmaceutics , 2020.
DOI: | 10.1021/acs.molpharmaceut.9b01173 |
Bibtex: | ![]() @article{Enzian2020, author = {Enzian, P.;Schell, C.;Link, A.;Malich, C.;Pries, R.;Wollenberg, B and Rahmanzadeh, R}, title = {Optically controlled drug release from light-sensitive liposomes with the new photosensitizer 5,10-DiOH}, journal = {Molecular Pharmaceutics}, ISSN = {1543-8384}, DOI = {10.1021/acs.molpharmaceut.9b01173}, year = {2020}, type = {Journal Article} } |
R
Wartak, and
G J.
Tearney,
Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures, Biomedical Optics Express , vol. 11(10), pp. 5920-5933, 2020.
Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures, Biomedical Optics Express , vol. 11(10), pp. 5920-5933, 2020.
DOI: | https://doi.org/10.1364/BOE.402971 |
Bibtex: | ![]() @article{Wartak2020, author = {Wartak, A;Schenk, M S.;Bühler, V;Kassumeh, S A.;Birngruber, R and Tearney, G J.}, title = {Micro-optical coherence tomography for high-resolution morphologic imaging of cellular and nerval corneal micro-structures}, keywords = {High numerical aperture optics,Image metrics,Image processing,Image quality,Optical coherence tomography,Optical imaging}, journal = {Biomedical Optics Express}, volume = {11(10)}, DOI = { https://doi.org/10.1364/BOE.402971}, pages = {5920-5933}, year = { 2020}, type = {Journal Article} } |