2016

Katharina Bliedtner, Eric Seifert, Leoni Stockmann, Lisa Effe, and Ralf Brinkmann,
Towards real time speckle controlled retinal photocoagulation, 2016. pp. 96931A-96931A-6.
Datei: 12.2212703
Bibtex: BibTeX
@inproceedings{Bliedtner2016,
   author = {Bliedtner, Katharina and Seifert, Eric and Stockmann, Leoni and Effe, Lisa and Brinkmann, Ralf},
   title = {Towards real time speckle controlled retinal photocoagulation},
   volume = {9693},
   pages = {96931A-96931A-6},
   note = {10.1117/12.2212703},
   abstract = {Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.},
   url = {http://dx.doi.org/10.1117/12.2212703},
   type = {Conference Proceedings},
year = { 2016}
}

2015

Jan Philip Kolb, Thomas Klein, Wolfgang Wieser, Wolfgang Draxinger, and Robert Huber,
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, Jul.2015. pp. 95410Z.
DOI:10.1117/12.2183768
Bibtex: BibTeX
@inproceedings{10.1117/12.2183768,
author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber},
title = {{High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second}},
volume = {9541},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media},
editor = {Brett E. Bouma and Maciej Wojtkowski},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {95410Z},
abstract = {We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.},
keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz-OCT},
year = {2015},
doi = {10.1117/12.2183768},
URL = {https://doi.org/10.1117/12.2183768}
}
Matthias Eibl, Sebastian Karpf, Wolfgang Wieser, Thomas Klein, and Robert Huber,
Hyperspectral stimulated Raman microscopy with two fiber laser sources, in Advanced Microscopy Techniques IV; and Neurophotonics II , SPIE, Jul.2015. pp. 953604.
DOI:10.1117/12.2183822
Bibtex: BibTeX
@inproceedings{10.1117/12.2183822,
author = {Matthias Eibl and Sebastian Karpf and Wolfgang Wieser and Thomas Klein and Robert Huber},
title = {{Hyperspectral stimulated Raman microscopy with two fiber laser sources}},
volume = {9536},
booktitle = {Advanced Microscopy Techniques IV; and Neurophotonics II},
editor = {Emmanuel Beaurepaire and Peter T. C. So and Francesco Pavone and Elizabeth M. Hillman},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {953604},
abstract = {A fast all fiber based setup for stimulated Raman microscopy based on a rapidly wavelength swept cw-laser is presented. The applied Fourier domain mode locked (FDML) laser is a fiber ring laser, providing a continuously changing wavelength output over time. This fast swept source allows us to rapidly change the wavelength and, thereby the energy difference with respect to a single color pump laser. The pump laser is a master oscillator power amplifier based on a fiber amplified laser diode and a Raman shifter. By controlled variation of the relative timing between probe and pump laser with an arbitrary waveform generator, the Raman signals are encoded in time and they are directly acquired with a synchronized, fast analog-to-digital converter. This setup is capable of acquiring rapidly high resolution spectra (up to 0.5 cm<sup>-1</sup>) with shot noise limited sensitivity over a broadband (750 cm<sup>-1</sup> to 3150 cm<sup>-1</sup>) spectral region. Here, we show the performance of this system for imaging in the CH-stretch region around 3000 cm<sup>-1</sup> and in the fingerprint region around 1600 cm<sup>-1</sup>. We present hyperspectral images of a plant stem slice with molecular contrast of lignin and a lipid representative as well as images of PS (polystyrene) and PMMA (poly(methyl methacrylate) beads with an acquisition speed of 18 &mu;s per spectral point.},
keywords = {stimulated Raman, multiphoton, microscopy, coherent Raman, fiber laser, FDML, TICO, hyperspectral},
year = {2015},
doi = {10.1117/12.2183822},
URL = {https://doi.org/10.1117/12.2183822}
}
Sebastian Karpf, Matthias Eibl, and Robert Huber,
Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser, in Advanced Microscopy Techniques IV; and Neurophotonics II , Emmanuel Beaurepaire and Peter T. C. So and Francesco Pavone and Elizabeth M. Hillman, Eds. SPIE, Jul.2015. pp. 953616.
DOI:10.1117/12.2183854
Bibtex: BibTeX
@inproceedings{10.1117/12.2183854,
author = {Sebastian Karpf and Matthias Eibl and Robert Huber},
title = {{Nanosecond two-photon excitation fluorescence imaging with a multi color fiber MOPA laser}},
volume = {9536},
booktitle = {Advanced Microscopy Techniques IV; and Neurophotonics II},
editor = {Emmanuel Beaurepaire and Peter T. C. So and Francesco Pavone and Elizabeth M. Hillman},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {953616},
abstract = {A system is presented that uses a fiber based Master Oscillator Power Amplifier (MOPA) with nanosecond-range pulses for two-photon excitation fluorescence (TPEF) imaging. The robust laser in the extended near infrared is based on an actively modulated electro-optical modulator (EOM), enabling free synchronization of the pulses to any other light source or detection unit. Pulses with a freely programmable duration between 0.4 and 10 ns are generated and then amplified to up to kilowatts of peak power with ytterbium doped fiber amplifiers (YDFA). Since we achieve peak power and duty cycles comparable to standard femto- and picosecond setups, the TPEF signal levels are similar, but realized with a robust and inexpensive fiber-based setup. The delivery fiber is further used as an optional, electronically controllable Raman shifter to effectively shift the 1064 nm light to 1122 nm and to 1186 nm. This allows imaging of a manifold of fluorophores, like e.g. TexasRed, mCherry, mRaspberry and many more. We show TPEF imaging of the autofluorescence of plant leaves of moss and algae, acquired in epi-direction. This modular laser unit can be integrated into existing systems as either a fiber-based, alignment free excitation laser or an extension for multi-modal imaging.},
keywords = {multi-photon imaging, TPEF, MOPA, TPA, fiber laser, Raman shifter, non-linear imaging, multi-modal imaging},
year = {2015},
doi = {10.1117/12.2183854},
URL = {https://doi.org/10.1117/12.2183854}
}
Wolfgang Wieser, Thomas Klein, Wolfgang Draxinger, and Robert Huber,
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, Jul.2015. pp. 954116.
DOI:10.1117/12.2183431
Bibtex: BibTeX
@inproceedings{10.1117/12.2183431,
author = {Wolfgang Wieser and Thomas Klein and Wolfgang Draxinger and Robert Huber},
title = {{Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm}},
volume = {9541},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media},
editor = {Brett E. Bouma and Maciej Wojtkowski},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {954116},
abstract = {While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.},
keywords = {OCT, optical coherence tomography, swept laser, wavelength-swept laser, fiber laser, MHz-OCT, Fourier-domain mode-locking, FDML},
year = {2015},
doi = {10.1117/12.2183431},
URL = {https://doi.org/10.1117/12.2183431}
}
Sebastian Karpf, Matthias Eibl, Wolfgang Wieser, Thomas Klein, and Robert Huber,
Time-encoded Raman scattering (TICO-Raman) with Fourier domain mode locked (FDML) lasers, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, Jul.2015. pp. 95410F.
DOI:10.1117/12.2183859
Bibtex: BibTeX
@inproceedings{10.1117/12.2183859,
author = {Sebastian Karpf and Matthias Eibl and Wolfgang Wieser and Thomas Klein and Robert Huber},
title = {{Time-encoded Raman scattering (TICO-Raman) with Fourier domain mode locked (FDML) lasers}},
volume = {9541},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media},
editor = {Brett E. Bouma and Maciej Wojtkowski},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {95410F},
abstract = {We present a new concept for performing stimulated Raman spectroscopy and microscopy by employing rapidly wavelength swept Fourier Domain Mode locked (FDML) lasers [1]. FDML lasers are known for fastest imaging in swept-source optical coherence tomography [2, 3]. We employ this continuous and repetitive wavelength sweep to generate broadband, high resolution stimulated Raman spectra with a new, time-encoded (TICO) concept [4]. This allows for encoding and detecting the stimulated Raman gain on the FDML laser intensity directly in time. Therefore we use actively modulated pump lasers, which are electronically synchronized to the FDML laser, in combination with a fast analog-to-digital converter (ADC) at 1.8 GSamples/s. We present hyperspectral Raman images with color-coded, molecular contrast.},
keywords = {swept lasers, FDML, TICO-Raman, fiber lasers, stimulated Raman microscopy, Raman spectroscopy, molecular contrast, multi-modal imaging},
year = {2015},
doi = {10.1117/12.2183859},
URL = {https://doi.org/10.1117/12.2183859}
}
Tom Pfeiffer, Wolfgang Wieser, Thomas Klein, Markus Petermann, Jan Philip Kolb, Matthias Eibl, and Robert Huber,
Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, Apr.2015. pp. 96970S-96970S-5.
DOI:10.1117/12.2214788
Bibtex: BibTeX
@inproceedings{10.1117/12.2214788,
author = {Tom Pfeiffer and Wolfgang Wieser and Thomas Klein and Markus Petermann and Jan-Phillip Kolb and Matthias Eibl and Robert Huber},
title = {{Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging}},
volume = {9697},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX},
editor = {Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {96970S},
abstract = {In order to realize fast OCT-systems with adjustable line rate, we investigate averaging of image data from an FDML based
MHz-OCT-system. The line rate can be reduced in software and traded in for increased system sensitivity and image
quality. We compare coherent and incoherent averaging to effectively scale down the system speed of a 3.2 MHz FDML
OCT system to around 100 kHz in postprocessing. We demonstrate that coherent averaging is possible with MHz systems
without special interferometer designs or digital phase stabilisation. We show OCT images of a human finger knuckle joint
in vivo with very high quality and deep penetration.},
keywords = {Optical coherence tomography, OCT, Fourier domain mode locking, FDML, MHz OCT, averaging, tunable laser},
year = {2016},
doi = {10.1117/12.2214788},
URL = {https://doi.org/10.1117/12.2214788}
}
Jan Philip Kolb, Philipp Schwarz, Thomas Klein, Wolfgang Wieser, and Robert Huber,
Dual parametric compounding approach for speckle reduction in OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, Mä.2015. pp. 93123G.
DOI:10.1117/12.2077659
Bibtex: BibTeX
@inproceedings{10.1117/12.2077659,
author = {Jan Philip Kolb and Philipp Schwarz and Thomas Klein and Wolfgang Wieser and Robert Huber},
title = {{Dual parametric compounding approach for speckle reduction in OCT}},
volume = {9312},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX},
editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {93123G},
abstract = {OCT as a coherent imaging technique inherently suffers from speckle. We present a new dual parametric compounding approach to reduce speckle. The approach is to acquire several OCT volumes with different numerical apertures (NAs). Then in post processing, a first spatial compounding step is performed by averaging of adjacent B-frames. In a second step data from the different volume is averaged. Retinal imaging data comparing this idea with standard spatial compounding is presented and analyzed and necessary parameters such as the required variation of the NA and number of different NAs are discussed},
keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode lockng, FDML, MHz OCT},
year = {2015},
doi = {10.1117/12.2077659},
URL = {https://doi.org/10.1117/12.2077659}
}
Jan Philip Kolb, Thomas Klein, Wolfgang Wieser, Wolfgang Draxinger, and Robert Huber,
Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, Mä.2015. pp. 931202.
DOI:10.1117/12.2077147
Bibtex: BibTeX
@inproceedings{10.1117/12.2077147,
author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber},
title = {{Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s}},
volume = {9312},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX},
editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {931202},
abstract = {Full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate is
presented. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan. The
volume rates vary between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a
1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed
with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is
used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative
OCT.},
keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode lockng, FDML, MHz OCT},
year = {2015},
doi = {10.1117/12.2077147},
URL = {https://doi.org/10.1117/12.2077147}
}
W Schwarzer, S Koinzer, and K Schlott,
Power-controlled temperature guided retinal photocoagulation , in Photonic West BIOS , 2015.
Datei: 12.2083042
Bibtex: BibTeX
@inproceedings{Baade2015,
   author = {Baade, A and Schwarzer, W and Koinzer, S and Schlott, K and Birngruber, R and Brinkman, R},
   title = {Power-controlled temperature guided retinal photocoagulation },
   booktitle = {Photonic West BIOS},
   type = {Conference Proceedings},
url = { https://doi.org/10.1117/12.2083042},
year = { 2015}
}

2014

Matthias Eibl, Sebastian Karpf, Wolfgang Wieser, Thomas Klein, and Robert Huber,
Broadband, High Resolution Stimulated Raman Spectroscopy with Rapidly Wavelength Swept cw-Lasers, in CLEO: 2014 , Optica Publishing Group, 2014. pp. ATu3P.4.
DOI:10.1364/CLEO_AT.2014.ATu3P.4
Bibtex: BibTeX
@inproceedings{Eibl:14,
author = {Matthias Eibl and Sebastian Karpf and Wolfgang Wieser and Thomas Klein and Robert Huber},
booktitle = {CLEO: 2014},
journal = {CLEO: 2014},
keywords = {Lasers, tunable; Scattering, stimulated Raman; Spectroscopy, Raman; Laser light; Laser sources; Master oscillator power amplifiers; Raman spectroscopy; Self phase modulation; Stimulated Raman scattering},
pages = {ATu3P.4},
publisher = {Optica Publishing Group},
title = {Broadband, High Resolution Stimulated Raman Spectroscopy with Rapidly Wavelength Swept cw-Lasers},
year = {2014},
url = {https://opg.optica.org/abstract.cfm?URI=CLEO_AT-2014-ATu3P.4},
doi = {10.1364/CLEO_AT.2014.ATu3P.4},
abstract = {A fast all fiber based setup for stimulated Raman spectroscopy with a rapidly wavelength swept cw-laser is presented. It enables flexible acquisition of broadband (750 cm{\textminus}1 to 3150 cm{\textminus}1) spectra with high resolution (0.5 cm{\textminus}1).},
}
Sebastian Karpf, Matthias Eibl, Wolfgang Wieser, Thomas Klein, and Robert Huber,
Hyperspectral Stimulated Raman Microscopy with Fiber-based, Rapidly Wavelength Swept cw-Lasers, in CLEO: 2014 , Optica Publishing Group, 2014. pp. SM3P.3.
DOI:10.1364/CLEO_SI.2014.SM3P.3
Bibtex: BibTeX
@inproceedings{Karpf:14,
author = {Sebastian Karpf and Matthias Eibl and Wolfgang Wieser and Thomas Klein and Robert Huber},
booktitle = {CLEO: 2014},
journal = {CLEO: 2014},
keywords = {Lasers, tunable; Scattering, stimulated Raman; Raman microscopy; Biological imaging; Medical imaging; Optical coherence tomography; Raman microscopy; Raman scattering; Swept lasers},
pages = {SM3P.3},
publisher = {Optica Publishing Group},
title = {Hyperspectral Stimulated Raman Microscopy with Fiber-based, Rapidly Wavelength Swept cw-Lasers},
year = {2014},
url = {https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2014-SM3P.3},
doi = {10.1364/CLEO_SI.2014.SM3P.3},
abstract = {A hyperspectral stimulated Raman microscopy system using rapidly wavelength swept lasers is presented. Imaging of biological samples with shot noise limited detection is demonstrated with the fiber based setup.},
}
J Horstmann,
Optical full-field holographic detection system for non-contact photoacoustic tomography, Proc. SPIE, 2014.
Bibtex: BibTeX
@inproceedings{
   author = {Horstmann, J and Brinkmann, R},
   title = {Optical full-field holographic detection system for non-contact photoacoustic tomography},
   publisher = {Proc. SPIE},
year = {2014},
   type = {Conference Proceedings}
}
J Horstmann,
Speckle-based holographic detection for non-contact Photoacoustic Tomography, in 48th annual conference of the German Society for Biomedical Engineering , 2014. pp. 844-847.
Bibtex: BibTeX
@inproceedings{Buj14,
   author = {Buj, C and Horstmann, J and Münter, M and Brinkmann, R},
   title = {Speckle-based holographic detection for non-contact Photoacoustic Tomography},
   booktitle = {48th annual conference of the German Society for Biomedical Engineering},
   volume = {59},
   pages = {844-847},
   type = {Conference Proceedings},
Year = { 2014}
}

2013

B. Olzowy, N. Starke, T. Schuldt, Gereon Hüttmann, Eva Lankenau, and Tino Just,
Optical coherence tomography and confocal endomicroscopy for rhinologic pathologies: a pilot study, in Head and Neck Optical Diagnostics , Christian Betz and Brian J. F. Wong M.D., Eds. SPIE, Jun.2013. pp. 880505.
DOI:10.1117/12.2033174
Datei: 12.2033174
Bibtex: BibTeX
@inproceedings{10.1117/12.2033174,
author = {B. Olzowy and N. Starke and T. Schuldt and G. H{\"u}ttmann and E. Lankenau and T. Just},
title = {{Optical coherence tomography and confocal endomicroscopy for rhinologic pathologies: a pilot study}},
volume = {8805},
booktitle = {Head and Neck Optical Diagnostics},
editor = {Christian Betz and Brian J. F. Wong M.D.},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {880505},
keywords = {optical coherence tomography, confocal microscopy, inverted papilloma , chronic rhinosinusitis, nasal polyps, mucociliary function, ciliated epithelium},
year = {2013},
doi = {10.1117/12.2033174},
URL = {https://doi.org/10.1117/12.2033174}
}
Tianshi Wang, Wolfgang Wieser, Geert Springeling, Robert Beurskens, Charles T. Lancee, Tom Pfeiffer, Antonius F. W. van der Steen, Robert Huber, and Gijs van Soest,
Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second, in Optical Coherence Tomography and Coherence Techniques VI , Brett E. Bouma and Rainer A. Leitgeb, Eds. SPIE, Jun.2013. pp. 88020O.
DOI:10.1117/12.2032723
Bibtex: BibTeX
@inproceedings{10.1117/12.2032723,
author = {Tianshi Wang and Wolfgang Wieser and Geert Springeling and Robert Beurskens and Charles T. Lancee and Tom Pfeiffer and Antonius F. W. van der Steen and Robert Huber and Gijs van Soest},
title = {{Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second}},
volume = {8802},
booktitle = {Optical Coherence Tomography and Coherence Techniques VI},
editor = {Brett E. Bouma and Rainer A. Leitgeb},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {88020O},
abstract = {We demonstrated intravascular OCT imaging with frame rate up to 3.2 kHz (192,000 rpm scanning). This was achieved by
using a custom-built catheter in which the circumferential scanning was actuated by a 1.0 mm diameter synchronous
motor. The OCT system was based on a Fourier Domain Mode Locked laser operating at an A-line rate of 1.6 MHz. The
diameter of the catheter was 1.1 mm at the tip. Ex vivo images of human coronary artery (~78.4 mm length) were acquired
at a pullback speed of 100 mm/s. True 3D volumetric imaging of the entire artery, with adequate sampling in all
dimensions, was performed in &lt; 1 second acquisition time.},
year = {2013},
doi = {10.1117/12.2032723},
URL = {https://doi.org/10.1117/12.2032723}
}
Sebastian Karpf, Matthias Eibl, Wolfgang Wieser, Thomas Klein, and Robert Huber,
FDML Raman: High Speed, High Resolution Stimulated Raman Spectroscopy with Rapidly Wavelength Swept Lasers, in CLEO: 2013 , Optica Publishing Group, Jun.2013. pp. CTu2H.5.
DOI:10.1364/CLEO_SI.2013.CTu2H.5
Bibtex: BibTeX
@inproceedings{Karpf:13,
author = {Sebastian Karpf and Matthias Eibl and Wolfgang Wieser and Thomas Klein and Robert Huber},
booktitle = {CLEO: 2013},
journal = {CLEO: 2013},
keywords = {Lasers, fiber; Scattering, stimulated Raman; Spectroscopy, Raman; Fourier domain mode locking; Lasers; Optical coherence tomography; Raman lasers; Raman spectroscopy; Swept lasers},
pages = {CTu2H.5},
publisher = {Optica Publishing Group},
title = {FDML Raman: High Speed, High Resolution Stimulated Raman Spectroscopy with Rapidly Wavelength Swept Lasers},
year = {2013},
url = {https://opg.optica.org/abstract.cfm?URI=CLEO_SI-2013-CTu2H.5},
doi = {10.1364/CLEO_SI.2013.CTu2H.5},
abstract = {An all fiber based system for high speed, high resolution Raman sensing is presented. The system is based on a wavelength swept Fourier Domain Mode Locked (FDML) laser for the detection of the Raman signal.},
}
Sebastian Karpf, Matthias Eibl, Wolfgang Wieser, Thomas Klein, and Robert Huber,
FDML Raman: New High Resolution SRS with ultra broadband spectral coverage, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC , Mai2013. pp. 1.
DOI:10.1109/CLEOE-IQEC.2013.6801995
Bibtex: BibTeX
@INPROCEEDINGS{6801995,
  author={Karpf, Sebastian and Eibl, Matthias and Wieser, Wolfgang and Klein, Thomas and Huber, Robert},
  booktitle={2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC}, 
  title={FDML Raman: New high resolution SRS with ultra broadband spectral coverage}, 
  year={2013},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEOE-IQEC.2013.6801995}}
Christoph M. Eigenwillig, Sebastian Todor, Wolfgang Wieser, Benjamin R. Biedermann, Thomas Klein, Christian Jirauschek, and Robert Huber,
Picosecond pulses from a Fourier domain mode locked (FDML) laser, in 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC , Mai2013. pp. 1.
DOI:10.1109/CLEOE-IQEC.2013.6801076
Bibtex: BibTeX
@INPROCEEDINGS{6801076,
  author={Eigenwillig, Christoph M. and Todor, Sebastian and Wieser, Wolfgang and Biedermann, Benjamin R. and Klein, Thomas and Jirauschek, Christian and Huber, Robert},
  booktitle={2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC}, 
  title={Picosecond pulses from a Fourier domain mode locked (FDML) laser}, 
  year={2013},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEOE-IQEC.2013.6801076}}
Yaokun Zhang, Tom Pfeiffer, Wolfgang Wieser, Marcel Weller, Robert Huber, Thomas Klenzner, Jörg Raczkowsky, and Heinz Wörn,
History compounding: a novel speckle reduction technique for OCT guided cochleostomy, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, Mä.2013. pp. 85713H.
DOI:10.1117/12.2006979
Bibtex: BibTeX
@inproceedings{10.1117/12.2006979,
author = {Yaokun Zhang and Tom Pfeiffer and Wolfgang Wieser and Marcel Weller and Robert Huber and Thomas Klenzner and J{\"o}rg Raczkowsky and Heinz W{\"o}rn},
title = {{History compounding: a novel speckle reduction technique for OCT guided cochleostomy}},
volume = {8571},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVII},
editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {85713H},
abstract = {Optical coherence tomography (OCT) is a promising candidate for monitoring the bottom of the drilled channel during
cochleostomy to prevent injury to the critical structure under the bone tissue. While the thickness of the overlaying bone
tissue is changed during the drilling process, the wave front of the backscattered light is also altered, resulting in
changing speckle patterns of the observed structures in the sequential historical scans. By averaging the different patterns
in these scans, named history compounding, the speckles can be reduced and the detection of critical structure becomes
much easier. Before averaging, the refractive index of bone tissue ???????? has to be compensated so that the speckles of the
same structure in different historical scans can be aligned together. An accurate method for measuring the refractive
index n<sub>b</sub> using OCT is presented. Experiments were conducted to evaluate history compounding and the new technique
is proved to be an effective, flexible and intuitive speckle reduction technique for OCT guided cochleostomy as well as
hard tissue ablation of other kind.},
keywords = {optical coherence tomography, speckle reduction, refractive index, cochleostomy, hard tissue ablation},
year = {2013},
doi = {10.1117/12.2006979},
URL = {https://doi.org/10.1117/12.2006979}
}
Alexander Baade, Kerstin Schlott, Ralf Brinkmann, and Reginald Birngruber,
A numerical model for heat and pressure propagation for temperature controlled retinal photocoagulation, 2013. pp. 88030O-88030O-9.
Datei: 12.2033590
Bibtex: BibTeX
@inproceedings{Baade2013,
   author = {Baade, Alexander and Schlott, Kerstin and Birngruber, Reginald and Brinkmann, Ralf},
   title = {A numerical model for heat and pressure propagation for temperature controlled retinal photocoagulation},
   volume = {8803},
   pages = {88030O-88030O-9},
   note = {10.1117/12.2033590},
   abstract = {Retinal photocoagulation is an established treatment for various retinal diseases. The temperature development during a treatment can be monitored by applying short laser pulses in addition to the treatment laser light. The laser pulses induce thermoelastic pressure waves that can be detected at the cornea. We present a numerical model to examine the temperature development during the treatment as well as the formation and propagation of the ultrasonic waves. Using the model, it is possible to determine the peak temperature during retinal photocoagulation from the measured signal, and investigate the behaviour of the temperature profile and the accuracy of the temperature determination under varying conditions such as inhomogeneous pigmentation or change in irradiation parameters. It was shown that there is an uncertainty of 2.5 -9% in the determination of the peak temperature when the absorption coefficient between the absorbing layers is varied by a factor of 2. Furthermore the model was extended in order to incorporate the photoacoustic pressure generation and wave propagation. It was shown that for an irradiation pulse duration of 75 ns the resulting pressure wave energy is attenuated by 76 % due to frequency dependent attenuation in water.},
   url = {http://dx.doi.org/10.1117/12.2033590},
   type = {Conference Proceedings}, 
year = { 2013}
}
Helge Sudkamp, H Y Lee, Gereon Hüttmann, and A K Kellerbee,
An approach to increase the speed of Optical Coherence Tomography using a Virtually Imaged Phased Array, in Studierendentagung , Universität zu Lübeck, 2013.
Bibtex: BibTeX
@inproceedings{Sudkamp2013,
   author = {Sudkamp, Helge and Lee, H Y and Hüttmann, Gereon and Kellerbee, A K},
   title = {An approach to increase the speed of Optical Coherence Tomography using a Virtually Imaged Phased Array},
   booktitle = {Studierendentagung},
   publisher = {Universität zu Lübeck},
   type = {Conference Proceedings},
year= { 2013}
}
Eric Seifert, Young-Jung Roh, Andreas Fritz, Young Gun Park, Seungbum Kang, Dirk Theisen-Kunde, and Ralf Brinkmann,
Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model, 2013. pp. 880303-880303-6.
Datei: 12.2033560
Bibtex: BibTeX
@inproceedings{Seifert2013,
   author = {Seifert, Eric and Roh, Young-Jung and Fritz, Andreas and Park, Young Gun and Kang, Seungbum and Theisen-Kunde, Dirk and Brinkmann, Ralf},
   title = {Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model},
   volume = {8803},
   pages = {880303-880303-6},
year = {2013},
   note = {10.1117/12.2033560},
   abstract = {Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.},
   url = {http://dx.doi.org/10.1117/12.2033560},
   type = {Conference Proceedings}
}
Alexander Oepen, Jens Horstmann, and Ralf Brinkmann,
Characterization of an Electronic Speckle Pattern Detection System, in Studierendentagung , 2013.
Bibtex: BibTeX
@inproceedings{Oepen2013,
   author = {van Oepen, Alexander and Horstmann, Jens and Brinkmann, Ralf},
   title = {Characterization of an Electronic Speckle Pattern Detection System},
   booktitle = {Studierendentagung},
   type = {Conference Proceedings}
}
Felix Fleischhauer, Hinnerk Schulz-Hildebrandt, Tim Bonin, and Gereon Hüttmann,
Polarization-sensitive optical coherence tomography on different tissues samples for tumor discrimination, in Studierendentagung , Universität zu Lübeck, 2013.
Datei: a18366acff021e12dcc090b40890ea70dcb8.pdf
Bibtex: BibTeX
@inproceedings{Fleischhauer2013,
   author = {Fleischhauer, Felix and Schulz-Hildebrandt, Hinnerk and Bonin, Tim and Hüttmann, Gereon},
   title = {Polarization-sensitive optical coherence tomography on different tissues samples for tumor discrimination},
   booktitle = {Studierendentagung},
   publisher = {Universität zu Lübeck},
   type = {Conference Proceedings},
url = { https://pdfs.semanticscholar.org/a581/a18366acff021e12dcc090b40890ea70dcb8.pdf},
 year = { 2013}
}