Svenja
Sonntag,
Maximilian
Hamann,
Eric
Seifert,
Salvatore
Grisanti,
Ralf
Brinkmann, and
Yoko
Miura,
Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium, Graefe's Archive for Clinical and Experimental Ophthalmology , 2024.
Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium, Graefe's Archive for Clinical and Experimental Ophthalmology , 2024.
DOI: | 10.1007/s00417-024-06449-2 |
Datei: | s00417-024-06449-2 |
Bibtex: | @article{RN5480, author = {Sonntag, Svenja Rebecca;Hamann, Maximilian;Seifert, Eric;Grisanti, Salvatore;Brinkmann, Ralf and Miura, Yoko}, title = {Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium}, journal = {Graefe's Archive for Clinical and Experimental Ophthalmology}, ISSN = {1435-702X}, DOI = {10.1007/s00417-024-06449-2}, url = {https://doi.org/10.1007/s00417-024-06449-2}, year = {2024}, type = {Journal Article} } |
Yoko
Miura,
Keiji
Inagaki,
Alessa
Hutfilz,
Eric
Seifert,
Benedikt
Schmarbeck,
Akira
Murakami,
Kishiko
Ohkoshi, and
Ralf
Brinkmann,
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
DOI: | https://doi.org/10.3390/life12091313 |
Datei: | 1313 |
Bibtex: | @article{Miura2022, author = {Miura, Y;Inagaki, K;Hutfilz, A;Seifert, E;Schmarbeck, B;Murakami, A;Ohkoshi, K and Brinkmann, R}, title = {Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application}, journal = {Life}, volume = {12(9)}, pages = {1313}, ISSN = {2075-1729}, url = {https://www.mdpi.com/2075-1729/12/9/1313}, year = {2022}, type = {Journal Article} } |
Eric
Seifert,
Jan
Tode,
Amelie
Pielen,
Dirk
Theisen-Kunde,
Carsten
Framme,
Johann
Roider,
Yoko
Miura,
Reginald
Birngruber, and
Ralf
Brinkmann,
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
Datei: | S2213597921000756 |
Bibtex: | @article{Seifert2021, author = {Seifert, E;Tode, J;Pielen, A;Theisen-Kunde, D;Framme, C;Roider, J;Miura, Y;Birngruber, R and Brinkmann, R}, title = {Algorithms for optoacoustically controlled selective retina therapy (SRT)}, journal = {Photoacoustics}, Keywords = {SRT; Lasers in medicine; Ophthalmology; RPE; Selectivity; Algorithm; Retina therapy; Optoacoustics; Feedback}, volume = {25}, pages = {100316}, ISSN = {2213-5979}, url = {https://www.sciencedirect.com/science/article/pii/S2213597921000756}, year = {2021}, type = {Journal Article} } |
Svenja
Sonntag,
Eric
Seifert,
Maximilian
Hamann,
Britta
Lewke,
Dirk
Theisen-Kunde,
Salvatore
Grisanti,
Ralf
Brinkmann, and
Yoko
Miura,
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
DOI: | https://www.mdpi.com/2075-1729/11/6/555 |
Datei: | 555 |
Bibtex: | @article{Miura2021-2, author = {Sonntag, S R;Seifert, E;Hamann, M;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y}, title = {Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States}, journal = {Life}, volume = {11(6)}, keywords = {retinal laser treatment; metabolic change; fluorescence lifetime imaging ophthalmoscopy}, pages = {555}, ISSN = {2075-1729}, url = {https://www.mdpi.com/2075-1729/11/6/555}, year = {2021}, type = {Journal Article} } |
E.
Seifert,
Kleingarn
Philipp,
Svenja
Sonntag,
Dirk
Theisen-Kunde,
Salvatore
Grisanti,
Reginald
Birngruber,
Yoko
Miura, and
Ralf
Brinkmann,
Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime, Investigative Ophthalmology & Visual Science , vol. 62(3), pp. 32-32, 2021.
Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime, Investigative Ophthalmology & Visual Science , vol. 62(3), pp. 32-32, 2021.
DOI: | 10.1167/iovs.62.3.32 |
Datei: | iovs.62.3.32 |
Bibtex: | @article{Seifert2021, author = {Seifert, E;Sonntag, S R;Kleingarn, P;Theisen-Kunde, D;Grisanti, S;Birngruber, R;Miura, Y and Brinkmann, R}, title = {Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime}, journal = {Investigative Ophthalmology & Visual Science}, volume = {62(3)}, pages = {32-32}, ISSN = {1552-5783}, DOI = {10.1167/iovs.62.3.32}, url = {https://doi.org/10.1167/iovs.62.3.32}, year = {2021}, type = {Journal Article} } |
Yoko
Miura,
Eric
Seifert,
Josua
Rehra,
Katharina
Kern,
Dirk
Theisen-Kunde,
Michael
Denton, and
Ralf
Brinkmann,
Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study, Int J Hyperth , pp. 1-7, 2019.
Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study, Int J Hyperth , pp. 1-7, 2019.
Datei: | 02656736.2019.1590653 |
Bibtex: | @article{Miura2019/4, author = {Miura, Y;Seifert, E;Rehra, J;Kern, K;Theisen-Kunde, D;Denton, M and Brinkmann, R}, title = {Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study}, journal = {Int J Hyperth}, pages = {1-7}, ISSN = {0265-6736}, url = {https://doi.org/10.1080/02656736.2019.1590653}, year = {2019}, type = {Journal Article} } |
Nicolas
Detrez,
Yoko
Miura,
Eric
Seifert,
Dirk
Theisen-Kunde, and
Ralf
Brinkmann,
Heating and optoacoustic temperature determination of cell cultures, in Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX , SPIE, 2019.
Heating and optoacoustic temperature determination of cell cultures, in Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX , SPIE, 2019.
Datei: | 12.2527024 |
Bibtex: | @inproceedings{Detrez2019, author = {Detrez, N;Miura, Y;Seifert, E;Theisen-Kunde, D and Brinkmann, R}, title = {Heating and optoacoustic temperature determination of cell cultures}, publisher = {SPIE}, volume = {11079}, series = {European Conferences on Biomedical Optics}, booktitle = {Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX}, url = {https://doi.org/10.1117/12.2527024}, keywords = {Laser, Noninvasive thermometry, hyperthermia, temperature measurement, photoacoustics}, optoacoustics, year = {2019}, type = {Conference Proceeding} } |
Eric
Seifert,
Jan
Tode,
Amelie
Pielen,
Dirk
Theisen-Kunde,
Carsten
Framme,
Johann
Roider,
Yoko
Miura,
Reginald
Birngruber, and
Ralf
Brinkmann,
Selective retina therapy: toward an optically controlled automatic dosing, J Biomed Opt , pp. 1-12, Nov. 2018.
Selective retina therapy: toward an optically controlled automatic dosing, J Biomed Opt , pp. 1-12, Nov. 2018.
DOI: | 10.1117/1.JBO.23.11.115002 |
Bibtex: | @article{seifert2018, author = {Seifert, E; Tode, J; Pielen, A; Theisen-Kunde, D; Framme, C; Roider, J; Miura, Y; Birngruber, R and Brinkmann, R}, title = {Selective retina therapy: toward an optically controlled automatic dosing}, journal = {J Biomed Opt}, pages = {1-12}, ISSN = {1560-2281 (Electronic) 1083-3668 (Linking)}, DOI = {10.1117/1.JBO.23.11.115002}, keywords = {algorithm, lasers in medicine, ophthalmology, retinal pigment epithelium, selective retina therapy, selectivity}, year = {2018}, type = {Journal Article} } |
Y. G.
Park,
J. R.
Kim,
S.
Kang,
E.
Seifert, and
Y. J.
Roh,
Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients, Graefes Arch Clin Exp Ophthalmol , 2016.
Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients, Graefes Arch Clin Exp Ophthalmol , 2016.
DOI: | 10.1007/s00417-015-3262-1 |
Bibtex: | @article{Park2016, author = {Park, Y. G. and Kim, J. R. and Kang, S. and Seifert, E. and Theisen-Kunde, D. and Brinkmann, R. and Roh, Y. J.}, title = {Safety and efficacy of selective retina therapy (SRT) for the treatment of diabetic macular edema in Korean patients}, journal = {Graefes Arch Clin Exp Ophthalmol}, note = {1435-702x Park, Young Gun Kim, Jae Ryun Kang, Seungbum Seifert, Eric Theisen-Kunde, Dirk Brinkmann, Ralf Roh, Young-Jung Journal article Graefes Arch Clin Exp Ophthalmol. 2016 Jan 23.}, abstract = {PURPOSE: Selective retina therapy (SRT) stimulates retinal pigment epithelium (RPE) cell migration and proliferation into irradiated areas. The objective of this study was to evaluate the efficacy and safety of SRT in Korean patients with clinically significant diabetic macular edema (DME). METHODS: Prospective non-randomized interventional case series study. Twenty-three eyes of 21 patients with clinically significant DME were treated with SRT and followed for 6 months. Patients underwent an evaluation of best corrected visual acuity (BCVA) in Early Treatment Diabetic Retinopathy Study (ETDRS) letters. Microperimetry was employed to measure macular sensitivity within the central 10 degrees field, and the central macular thickness (CMT) and maximum macular thickness (MMT) were measured. RESULTS: An improvement in BCVA of one to two ETDRS lines was observed in 41.2 % of patients and an improvement of greater than two lines in 29.4 %. Although there was no significant change in CMT (P > 0.05), MMT decreased from 465.8 +/- 87.4 mum to 434.3 +/- 83.9 mum (P = 0.006), and mean macular sensitivity increased from 20.8 +/- 3.4dB to 22.5 +/- 3.5dB (P = 0.02). CONCLUSIONS: The gains in BCVA and improvement in macular sensitivity demonstrated that SRT may be used as an effective and safe treatment modality in Korean patients with clinically significant DME.}, keywords = {Diabetic macular edema Dosimetry Microperimetry Retinal pigment epithelium Selective retina therapy}, ISSN = {0721-832x}, DOI = {10.1007/s00417-015-3262-1}, year = {2016}, type = {Journal Article} } |
S.
Kang,
Y. G.
Park,
J. R.
Kim,
E.
Seifert, and
Y. J.
Roh,
Selective Retina Therapy in Patients With Chronic Central Serous Chorioretinopathy: A Pilot Study, Medicine (Baltimore) , vol. 95, no. 3, pp. e2524, 2016.
Selective Retina Therapy in Patients With Chronic Central Serous Chorioretinopathy: A Pilot Study, Medicine (Baltimore) , vol. 95, no. 3, pp. e2524, 2016.
DOI: | 10.1097/md.0000000000002524 |
Bibtex: | @article{Kang1016, author = {Kang, S. and Park, Y. G. and Kim, J. R. and Seifert, E. and Theisen-Kunde, D and Brinkman, R and Roh, Y. J.}, title = {Selective Retina Therapy in Patients With Chronic Central Serous Chorioretinopathy: A Pilot Study}, journal = {Medicine (Baltimore)}, volume = {95}, number = {3}, pages = {e2524}, note = {1536-5964 Kang, Seungbum Park, Young Gun Kim, Jae Ryun Seifert, Eric Dirk, Theisen-Kunde Ralf, Brinkmann Roh, Young Jung Journal Article United States Medicine (Baltimore). 2016 Jan;95(3):e2524. doi: 10.1097/MD.0000000000002524.}, abstract = {We evaluated visual outcomes, changes of maximum macular thickness (MMT) and subretinal fluid (SRF), and safety in patients with chronic central serous chorioretinopathy (CSC) after treatment with selective retina therapy (SRT). Retrospective cohort study of patients with chronic CSC presenting to a university-based hospital from January 2014 through January 2015 was conducted. A total of 12 eyes of 12 patients with chronic CSC lasting for at least 3 months was recruited. The follow-up period ranged from 3 to 12 months. Following evaluation of test spots at temporal arcades, SRT (Q-switched neodymium-doped yttrium lithium fluoride [Nd:YLF] laser; wavelength, 527 nm, pulse duration, 1.7 microsececond) was applied to the surrounding areas of leakage observed on fluorescein angiogram and/or pigment epithelial detachment (PED). Changes in best-correct visual acuity (BCVA), MMT, and SRF and macular sensitivity (MS) by microperimetry (MP) were evaluated. Eyes received treatment in a mean of 3.83 spots at the pulse energy of 65 to 90 muJ. Mean BCVA (logMAR) improved from 0.23 +/- 0.12 at baseline to 0.14 +/- 0.13 at 3 months. MMT decreased from 341.4 +/- 85.5 mum at baseline to 236.0 +/- 57.9 mum at 3 months. SRF completely resolved in 75% (9 eyes) at 3 months. Large PEDs (2 eyes) were flattened at 3 months. Retreatment was performed in 4 eyes. MP showed no evidence of scotoma around SRT-treated lesions. SRT treatment targeting the surrounding area of leakage point showed favorable visual and structural outcomes in chronic CSC patients without the risk of scotoma.}, ISSN = {0025-7974}, DOI = {10.1097/md.0000000000002524}, year = {2016}, type = {Journal Article} } |
Katharina
Bliedtner,
Eric
Seifert,
Leoni
Stockmann,
Lisa
Effe, and
Ralf
Brinkmann,
Towards real time speckle controlled retinal photocoagulation, 2016. pp. 96931A-96931A-6.
Towards real time speckle controlled retinal photocoagulation, 2016. pp. 96931A-96931A-6.
Datei: | 12.2212703 |
Bibtex: | @inproceedings{Bliedtner2016, author = {Bliedtner, Katharina and Seifert, Eric and Stockmann, Leoni and Effe, Lisa and Brinkmann, Ralf}, title = {Towards real time speckle controlled retinal photocoagulation}, volume = {9693}, pages = {96931A-96931A-6}, note = {10.1117/12.2212703}, abstract = {Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.}, url = {http://dx.doi.org/10.1117/12.2212703}, type = {Conference Proceedings}, year = { 2016} } |
Eric
Seifert,
Young-Jung
Roh,
Andreas
Fritz,
Young Gun
Park,
Seungbum
Kang,
Dirk
Theisen-Kunde, and
Ralf
Brinkmann,
Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model, 2013. pp. 880303-880303-6.
Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model, 2013. pp. 880303-880303-6.
Datei: | 12.2033560 |
Bibtex: | @inproceedings{Seifert2013, author = {Seifert, Eric and Roh, Young-Jung and Fritz, Andreas and Park, Young Gun and Kang, Seungbum and Theisen-Kunde, Dirk and Brinkmann, Ralf}, title = {Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model}, volume = {8803}, pages = {880303-880303-6}, year = {2013}, note = {10.1117/12.2033560}, abstract = {Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.}, url = {http://dx.doi.org/10.1117/12.2033560}, type = {Conference Proceedings} } |
Kathrin
Bliedtner,
Eric
Seifert, and
Ralf
Brinkmann,
Temperature induced tissue deformation monitored by dynamic speckle interferometry, in Studierendentagung , Universität zu Lübeck, 2013.
Temperature induced tissue deformation monitored by dynamic speckle interferometry, in Studierendentagung , Universität zu Lübeck, 2013.
Datei: | download |
Bibtex: | @inproceedings{Bliedtner2013, author = {Bliedtner, Kathrin and Seifert, Eric and Brinkmann, Ralf}, title = {Temperature induced tissue deformation monitored by dynamic speckle interferometry}, booktitle = {Studierendentagung}, publisher = {Universität zu Lübeck}, type = {Conference Proceedings}, year = { 2013}, url = { http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.714.8862&rep=rep1&type=pdf} } |