Philipp Lamminger

Photo of Philipp  Lamminger

Doktorand / PhD Student

AG Huber
Universität zu Lübeck
Institut für Biomedizinische Optik

Peter-Monnik-Weg 4
23562 Lübeck
Gebäude 81, Raum 72

Email: phi.lamminger(at)uni-luebeck.de
Phone: +49 451 3101 3229
Fax: +49 451 3101 3204



2023

Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
Four-Wave Mixing Fast Wavelength Sweeping FDML Laser with kW Peak Power at 900 nm and 1300 nm, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232141
Bibtex: BibTeX
@INPROCEEDINGS{10232141,
  author={Lamminger, Philipp and Hakert, Hubertus and Lotz, Simon and Kolb, Jan Philip and Kutscher, Tonio and Karpf, Sebastian and Huber, Robert},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Four-Wave Mixing Fast Wavelength Sweeping FDML Laser with kW Peak Power at 900 nm and 1300 nm}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232141}}
Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm, Opt. Lett. , vol. 48, no. 14, pp. 3713-3716, 07 2023. Optica Publishing Group.
DOI:10.1364/OL.488181
Bibtex: BibTeX
@article{Lamminger:23,
author = {Philipp Lamminger and Hubertus Hakert and Simon Lotz and Jan Philip Kolb and Tonio Kutscher and Sebastian Karpf and Robert Huber},
journal = {Opt. Lett.},
keywords = {Green fluorescent protein; Laser beam combining; Laser crystals; Laser imaging; Optical amplifiers; Photonic crystal lasers},
number = {14},
pages = {3713--3716},
publisher = {Optica Publishing Group},
title = {Four-wave mixing seeded by a rapid wavelength-sweeping FDML laser for nonlinear imaging at 900 nm and 1300 nm},
volume = {48},
month = {Jul},
year = {2023},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-48-14-3713},
doi = {10.1364/OL.488181},
abstract = {Four-wave mixing (FWM) enables the generation and amplification of light in spectral regions where suitable fiber gain media are unavailable. The 1300 nm and 900 nm regions are of especially high interest for time-encoded (TICO) stimulated Raman scattering microscopy and spectro-temporal laser imaging by diffracted excitation (SLIDE) two-photon microscopy. We present a new, to the best of our knowledge, FWM setup where we shift the power of a home-built fully fiber-based master oscillator power amplifier (MOPA) at 1064 nm to the 1300-nm region of a rapidly wavelength-sweeping Fourier domain mode-locked (FDML) laser in a photonic crystal fiber (PCF) creating pulses in the 900-nm region. The resulting 900-nm light can be wavelength swept over 54 nm and has up to 2.5 kW (0.2 {\textmu}J) peak power and a narrow instantaneous spectral linewidth of 70 pm. The arbitrary pulse patterns of the MOPA and the fast wavelength tuning of the FDML laser (419 kHz) allow it to rapidly tune the FWM light enabling new and faster TICO-Raman microscopy, SLIDE imaging, and other applications.},
}
Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
900 nm swept source FDML laser with kW peak power, in Fiber Lasers XX: Technology and Systems , V. R. Supradeepa, Eds. SPIE, 032023. pp. 124001I.
DOI:10.1117/12.2649663
Bibtex: BibTeX
@inproceedings{10.1117/12.2649663,
author = {Philipp Lamminger and Hubertus Hakert and Simon Lotz and Jan Philip Kolb and Tonio Kutscher and Sebastian Karpf and Robert Huber},
title = {{900 nm swept source FDML laser with kW peak power}},
volume = {12400},
booktitle = {Fiber Lasers XX: Technology and Systems},
editor = {V.  R. Supradeepa},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {124001I},
abstract = {A wavelength agile 900 nm 2.5 kW peak power fiber laser is created by four-wave mixing (FWM) in a photonic crystal fiber (PCF), while amplifying a 1300 nm Fourier-domain mode-locked (FDML) laser. The FWM process is pumped by a home-built 1064 nm master oscillator power amplifier (MOPA) laser and seeded by a home-built 1300 nm FDML laser, generating high power pulses at wavelengths, where amplification by active fiber media is difficult. The 900 nm pulses have a spectral linewidth of 70 pm, are tunable over 54 nm and have electronic pulse-to-pulse tuning capability. These pulses can be used for nonlinear imaging like two-photon or coherent anti-Stokes Raman microscopy (CARS) microscopy including spectro-temporal laser imaging by diffracted excitation (SLIDE) and time-encoded (Tico) stimulated Raman microscopy.},
keywords = {Fourier domain mode locking,  FDML, Raman, two photon microscopy, SLIDE, 900 nm, fiber laser, photonic crystal fiber, swept source},
year = {2023},
doi = {10.1117/12.2649663},
URL = {https://doi.org/10.1117/12.2649663}
}
Stefan Meyer, Tonio F. Kutscher, Philipp Lamminger, Florian Sommer, and Sebastian Karpf,
Leveraging the periodic interference condition in electro-optic modulators for picosecond pulse generation, Opt. Continuum , vol. 2, no. 11, pp. 2298--2307, 2023. Optica Publishing Group.
DOI:10.1364/OPTCON.500969
Datei: abstract.cfm
Bibtex: BibTeX
@article{Meyer:23,
author = {Stefan Meyer and Tonio F. Kutscher and Philipp Lamminger and Florian Sommer and Sebastian Karpf},
journal = {Opt. Continuum},
keywords = {Femtosecond pulses; Fluorescence lifetime imaging; Phase modulation; Picosecond pulses; Single mode lasers; Ultrashort pulses},
number = {11},
pages = {2298--2307},
publisher = {Optica Publishing Group},
title = {Leveraging the periodic interference condition in electro-optic modulators for picosecond pulse generation},
volume = {2},
month = {Nov},
year = {2023},
url = {https://opg.optica.org/optcon/abstract.cfm?URI=optcon-2-11-2298},
doi = {10.1364/OPTCON.500969},
abstract = {Ultra-short optical pulses in the femtosecond and picosecond regime are typically generated using mode-locked lasers. However, in mode-locking, the pulse repetition rate is fundamentally linked to the cavity length of the laser, making it difficult to synchronize these laser pulses to other light sources. Here, we apply a pulse-on-demand approach to picosecond pulse generation with an electro-optic intensity modulator (EOM). The high, 40 GHz bandwidth of the EOM enables low picosecond pulses, however it shifts the problem of pulse generation to the electronic pulses, requiring high bandwidth electronics. In this study, we present an electro-optic operation, leveraging the periodic interference condition of intensity EOMs by operating it with rising edges at twice its V$\pi$ voltage. Utilizing this method, pulse durations as short as 10.9 ps were achieved by employing a 35 ps edge from an arbitrary waveform generator. The pulses were measured directly on a high-speed oscilloscope as well as indirectly through the spectral broadening of the generated optical pulses. We employ this approach to show arbitrary pulse length generation by applying step functions with only one V$\pi$ voltage, thus permitting direct pulse-on-demand generation of pulses with arbitrary pulse length, shape and repetition rate for applications in spectroscopy, sensing and nonlinear imaging.},
}
Tonio F. Kutscher, Philipp Lamminger, Anton Gruber, Christina Leonhardt, Annika Hunold, Robert A. Huber, and Sebastian Karpf,
Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm, Opt. Lett. , vol. 48, no. 23, pp. 6096--6099, 2023. Optica Publishing Group.
DOI:10.1364/OL.500943
Datei: abstract.cfm
Bibtex: BibTeX
@article{Kutscher:23,
author = {Tonio F. Kutscher and Philipp Lamminger and Anton Gruber and Christina Leonhardt and Annika Hunold and Robert A. Huber and Sebastian Karpf},
journal = {Opt. Lett.},
keywords = {Erbium-doped fiber amplifiers; Laser imaging; Laser sources; Lidar; Multiphoton microscopy; Picosecond pulses},
number = {23},
pages = {6096--6099},
publisher = {Optica Publishing Group},
title = {Pulsed swept-source FDML-MOPA laser with kilowatt picosecond pulses around 1550 nm},
volume = {48},
month = {Dec},
year = {2023},
url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-48-23-6096},
doi = {10.1364/OL.500943},
abstract = {Swept-source lasers are versatile light sources for spectroscopy, imaging, and microscopy. Swept-source-powered multiphoton microscopy can achieve high-speed, inertia-free point scanning with MHz line-scan rates. The recently introduced spectro-temporal laser imaging by diffractive excitation (SLIDE) technique employs swept-source lasers to achieve kilohertz imaging rates by using a swept-source laser in combination with a diffraction grating for point scanning. Multiphoton microscopy at a longer wavelength, especially in the shortwave infrared (SWIR) region, can have advantages in deep tissue penetration or applications in light detection and ranging (LiDAR). Here we present a swept-source laser around 1550 nm providing high-speed wavelength agility and high peak power pulses for nonlinear excitation. The swept-source laser is a Fourier-domain mode-locked (FDML) laser operating at 326 kHz sweep rate. For high peak powers, the continuous wave (cw) output is pulse modulated to short picosecond pulses and amplified using erbium-doped fiber amplifiers (EDFAs) to peak powers of several kilowatts. This FDML-master oscillator power amplifier (FDML-MOPA) setup uses reliable, low-cost fiber components. As proof-of-principle measurement, we show third-harmonic generation (THG) using harmonic nanoparticles at the 10 MHz pulse excitation rate. This new, to the best of our knowledge, laser source provides unique performance parameters for applications in nonlinear microscopy, spectroscopy, and ranging.},
}

2021

Philipp Lamminger, Merle Loop, Julian Klee, Daniel Weng, Jan Philip Kolb, Matthias Strauch, Sebastian Karpf, and Robert Huber,
Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups, in Multimodal Biomedical Imaging XVI , SPIE, 032021.
DOI:10.1117/12.2578679
Bibtex: BibTeX
@Conference{Lamminger2021,
  author    = {P. Lamminger, M. Loop, J. Klee, D. Weng, J.P. Kolb, M. Strauch, S. Karpf and R. Huber},
  booktitle = {Multimodal Biomedical Imaging XVI},
  title     = {Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups},
  year      = {2021},
  publisher = {SPIE},
  doi       = {10.1117/12.2578679},
  keywords  = {AG-Huber_NL, AG-Huber_OCT},
}

2019

Daniel Weng, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Matthias Strauch, Matthias Eibl, Philipp Lamminger, Sebastian Karpf, and Robert Huber,
Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , IEEE, 062019. pp. 1-1.
DOI:10.1109/CLEOE-EQEC.2019.8872571
Bibtex: BibTeX
@INPROCEEDINGS{8872571,
  author={Weng, Daniel and Hakert, Hubertus and Blömker, Torben and Kolb, Jan Philip and Strauch, Matthias and Eibl, Matthias and Lamminger, Philipp and Karpf, Sebastian and Huber, Robert},
  booktitle={2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions}, 
  year={2019},
  volume={},
  number={},
  pages={1-1},
  abstract={Summary form only given. Two-photon microscopy is a powerful technique for in vivo imaging, due to its high penetration depth and axial sectioning. Usually excitation wavelengths in the near infrared are used. However, most fluorescence techniques for live cell imaging require labeling with exogenous fluorophores. It has been shown that shorter wavelengths can be used to excite the autofluorescence of endogenous proteins, e.g. tryptophan. Recently we demonstrated a fully fiber-based laser source built around a directly modulated, ytterbium amplified 1064 nm laser diode with sub-nanosecond pulses for two-photon imaging [2]. The overall system enables to capture high-speed fluorescence lifetime imaging (FLIM) with single pulse excitation. Here, we extend the spectral range of this laser source by frequency doubling it to 532nm to achieve two-photon excited fluorescence microscopy (TPM) in the ultraviolett (UV) range to harness endogenous autofluorescence. In this presentation we explore first TPM results of tryptophan to investigate signal levels and fi delity before transitioning to biological tissues. It has been shown that TPM of endogenous tryptophan can be used to visualize immune system activity in vivo. Our laser source could be a cheap, flexible and fiber-based alternative to the OPO-based Ti:Sa Lasers currently employed. The basic concept of our design is to shift the wavelength of the pulsed fiber-based master oscillator power amplifier (MOPA) by second-harmonic generation (SHG) using phase-matching in a KTP crystal. This generates a coherent output at 532nm at a maximal peak power of 500W. We achieved a maximum conversion efficiency of about 17%. After the SHG module, the 532nm light is coupled into a single-mode fiber and delivered to a home built microscope. A 40x microscope objective is used to excite the sample and epi-collect the fluorescence. The fluorescence is recorded on a UV-enhanced photomultiplier tube (PMT). For a proof of concept measurement, crystalized tryptophan was imaged. Here we show signals of pure tryptophan, with laser parameters of 1MHz repetition rate and 100ps pulse duration. We used spectral bandpass fi lters in order to detect only fluorescence signal, however, from crystalized tryptophan we observed an unexpected short lifetime. We have recently shown that we can shift our laser output from 1064nm to longer wavelengths. By shifting to 1180nm and frequency doubling to 590nm a more efficient fluorescence excitation of tryptophan can be achieved. In the future we aim at in vivo imaging with our setup.},
  keywords={},
  doi={10.1109/CLEOE-EQEC.2019.8872571},
  ISSN={},
  month={June}}