Philipp Lamminger

Photo of Philipp  Lamminger

Doktorand / PhD Student


Universität zu Lübeck
Institut für Biomedizinische Optik

Maria-Goeppert-Str. 1
23562 Lübeck
Gebäude MFC 1, Raum 2.19

Email: phi.lamminger(at)uni-luebeck.de
Phone: +49 451 3101 3229
Fax: +49 451 3101 3233



2023

Philipp Lamminger, Hubertus Hakert, Simon Lotz, Jan Philip Kolb, Tonio Kutscher, Sebastian Karpf, and Robert Huber,
900 nm swept source FDML laser with kW peak power, in Fiber Lasers XX: Technology and Systems , V. R. Supradeepa, Eds. SPIE, 032023. pp. 124001I.
DOI:10.1117/12.2649663
Bibtex: BibTeX
@inproceedings{10.1117/12.2649663,
author = {Philipp Lamminger and Hubertus Hakert and Simon Lotz and Jan Philip Kolb and Tonio Kutscher and Sebastian Karpf and Robert Huber},
title = {{900 nm swept source FDML laser with kW peak power}},
volume = {12400},
booktitle = {Fiber Lasers XX: Technology and Systems},
editor = {V.  R. Supradeepa},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {124001I},
abstract = {A wavelength agile 900 nm 2.5 kW peak power fiber laser is created by four-wave mixing (FWM) in a photonic crystal fiber (PCF), while amplifying a 1300 nm Fourier-domain mode-locked (FDML) laser. The FWM process is pumped by a home-built 1064 nm master oscillator power amplifier (MOPA) laser and seeded by a home-built 1300 nm FDML laser, generating high power pulses at wavelengths, where amplification by active fiber media is difficult. The 900 nm pulses have a spectral linewidth of 70 pm, are tunable over 54 nm and have electronic pulse-to-pulse tuning capability. These pulses can be used for nonlinear imaging like two-photon or coherent anti-Stokes Raman microscopy (CARS) microscopy including spectro-temporal laser imaging by diffracted excitation (SLIDE) and time-encoded (Tico) stimulated Raman microscopy.},
keywords = {Fourier domain mode locking,  FDML, Raman, two photon microscopy, SLIDE, 900 nm, fiber laser, photonic crystal fiber, swept source},
year = {2023},
doi = {10.1117/12.2649663},
URL = {https://doi.org/10.1117/12.2649663}
}

2021

Philipp Lamminger, Merle Loop, Julian Klee, Daniel Weng, Jan Philip Kolb, Matthias Strauch, Sebastian Karpf, and Robert Huber,
Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups, in Multimodal Biomedical Imaging XVI , SPIE, 032021.
DOI:10.1117/12.2578679
Bibtex: BibTeX
@Conference{Lamminger2021,
  author    = {P. Lamminger, M. Loop, J. Klee, D. Weng, J.P. Kolb, M. Strauch, S. Karpf and R. Huber},
  booktitle = {Multimodal Biomedical Imaging XVI},
  title     = {Combination of two-photon microscopy and optical coherence tomography with fully fiber-based lasers for future endoscopic setups},
  year      = {2021},
  publisher = {SPIE},
  doi       = {10.1117/12.2578679},
  keywords  = {AG-Huber_NL, AG-Huber_OCT},
}

2019

Daniel Weng, Hubertus Hakert, Torben Blömker, Jan Philip Kolb, Matthias Strauch, Matthias Eibl, Philipp Lamminger, Sebastian Karpf, and Robert Huber,
Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions, in 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , IEEE, 062019. pp. 1-1.
DOI:10.1109/CLEOE-EQEC.2019.8872571
Bibtex: BibTeX
@INPROCEEDINGS{8872571,
  author={Weng, Daniel and Hakert, Hubertus and Blömker, Torben and Kolb, Jan Philip and Strauch, Matthias and Eibl, Matthias and Lamminger, Philipp and Karpf, Sebastian and Huber, Robert},
  booktitle={2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Sub-Nanosecond Pulsed Fiber Laser for 532nm Two-Photon Excitation Fluorescence (TPEF) Microscopy of UV Transitions}, 
  year={2019},
  volume={},
  number={},
  pages={1-1},
  abstract={Summary form only given. Two-photon microscopy is a powerful technique for in vivo imaging, due to its high penetration depth and axial sectioning. Usually excitation wavelengths in the near infrared are used. However, most fluorescence techniques for live cell imaging require labeling with exogenous fluorophores. It has been shown that shorter wavelengths can be used to excite the autofluorescence of endogenous proteins, e.g. tryptophan. Recently we demonstrated a fully fiber-based laser source built around a directly modulated, ytterbium amplified 1064 nm laser diode with sub-nanosecond pulses for two-photon imaging [2]. The overall system enables to capture high-speed fluorescence lifetime imaging (FLIM) with single pulse excitation. Here, we extend the spectral range of this laser source by frequency doubling it to 532nm to achieve two-photon excited fluorescence microscopy (TPM) in the ultraviolett (UV) range to harness endogenous autofluorescence. In this presentation we explore first TPM results of tryptophan to investigate signal levels and fi delity before transitioning to biological tissues. It has been shown that TPM of endogenous tryptophan can be used to visualize immune system activity in vivo. Our laser source could be a cheap, flexible and fiber-based alternative to the OPO-based Ti:Sa Lasers currently employed. The basic concept of our design is to shift the wavelength of the pulsed fiber-based master oscillator power amplifier (MOPA) by second-harmonic generation (SHG) using phase-matching in a KTP crystal. This generates a coherent output at 532nm at a maximal peak power of 500W. We achieved a maximum conversion efficiency of about 17%. After the SHG module, the 532nm light is coupled into a single-mode fiber and delivered to a home built microscope. A 40x microscope objective is used to excite the sample and epi-collect the fluorescence. The fluorescence is recorded on a UV-enhanced photomultiplier tube (PMT). For a proof of concept measurement, crystalized tryptophan was imaged. Here we show signals of pure tryptophan, with laser parameters of 1MHz repetition rate and 100ps pulse duration. We used spectral bandpass fi lters in order to detect only fluorescence signal, however, from crystalized tryptophan we observed an unexpected short lifetime. We have recently shown that we can shift our laser output from 1064nm to longer wavelengths. By shifting to 1180nm and frequency doubling to 590nm a more efficient fluorescence excitation of tryptophan can be achieved. In the future we aim at in vivo imaging with our setup.},
  keywords={},
  doi={10.1109/CLEOE-EQEC.2019.8872571},
  ISSN={},
  month={June}}