Marie Klufts

Photo of Marie  Klufts

Doktorandin / PhD Student

AG Huber
Universität zu Lübeck
Institut für Biomedizinische Optik

Maria-Goeppert-Str. 1
23562 Lübeck
Gebäude MFC 1, Raum 2.24

Email: marie.klufts(at)uni-luebeck.de
Phone: +49 451 3101 3234
Fax: +49 451 3101 3204



2023

Marie Klufts, A. Martínez Jiménez, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Adrian Bradu, Adrian Podoleanu, and Robert Huber,
828 kHz retinal imaging with an 840 nm Fourier domain mode locked laser, Biomed. Opt. Express , vol. 14, no. 12, pp. 6493-6508, Nov. 2023. Optica Publishing Group.
DOI:10.1364/BOE.504302
Bibtex: BibTeX
@article{Klufts:23,
author = {Marie Klufts and Alejandro Martinez Jimenez and Simon Lotz and Muhammad Asim Bashir and Tom Pfeiffer and Alexander Mlynek and Wolfgang Wieser and Alexander Chamorovskiy and Adrian Bradu and Adrian Podoleanu and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {Analog to digital converters; Laser beams; Laser imaging; Laser modes; Point spread function; Vertical cavity surface emitting lasers},
number = {12},
pages = {6493--6508},
publisher = {Optica Publishing Group},
title = {828 kHz retinal imaging with an 840\&\#x2005;nm Fourier domain mode locked laser},
volume = {14},
month = {Dec},
year = {2023},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-14-12-6493},
abstract = {This paper presents a Fourier domain mode locked (FDML) laser centered around 840 nm. It features a bidirectional sweep repetition rate of 828 kHz and a spectral bandwidth of 40 nm. An axial resolution of ∼9.9 µm in water and a 1.4 cm sensitivity roll-off are achieved. Utilizing a complex master-slave (CMS) recalibration method and due to a sufficiently high sensitivity of 84.6 dB, retinal layers of the human eye in-vivo can be resolved during optical coherence tomography (OCT) examination. The developed FDML laser enables acquisition rates of 3D-volumes with a size of 200 × 100 × 256 voxels in under 100 milliseconds. Detailed information on the FDML implementation, its challenging design tasks, and OCT images obtained with the laser are presented in this paper.},
}
Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Vladimir Shidlovski, Adrian Podoleanu, and Robert Huber,
Dual Amplification 850 nm FDML Laser, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232019
Bibtex: BibTeX
@INPROCEEDINGS{10232019,
  author={Klufts, M. and Lotz, S. and Bashir, M. A. and Pfeiffer, T. and Mlynek, A. and Wieser, W. and Chamorovskiy, A. and Shidlovski, V. and Podoleanu, A. and Huber, R.},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Dual Amplification 850 nm FDML Laser}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232019}}
Muhammad Asim Bashir, Simon Lotz, Marie Klufts, Christian Jirauschek, and Robert Huber,
1190 nm FDML laser: Challenges and Strategies, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10232661
Bibtex: BibTeX
@INPROCEEDINGS{10232661,
  author={Bashir, M. A. and Lotz, S. and Kluftsa, M. and Jirauschek, C. and Huberab, R.},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={1190 nm FDML laser: Challenges and Strategies}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10232661}}
Muhammad Asim Bashir, Simon Lotz, Marie Klufts, Igor Krestnikov, Christian Jirauschek, and Robert Huber,
1190 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT), in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236707.
DOI:10.1117/12.2652884
Bibtex: BibTeX
@inproceedings{10.1117/12.2652884,
author = {M. A. Bashir and S. Lotz and M. Klufts and I. Krestnikov and C. Jirauschek and R. Huber},
title = {{1190 nm Fourier domain mode locked (FDML) laser for optical coherence tomography (OCT)}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236707},
abstract = {We demonstrate a Fourier domain mode locked (FDML) laser centered at 1190 nm with 2×410 kHz sweep repetition rate, a sweeping range of 100 nm and 2.5 mW output power. The laser is based on a quantum dot-semiconductor optical amplifier with small linewidth enhancement factor. The laser could be used as a probe laser in stimulated Raman scattering microscopy and it may be attractive for optical coherence tomography due to low water absorption and the spectral signature of lipids around 1200nm. Moreover, it is ideal to close the gap between FDML lasers at 1064 nm and 1300 nm. Combining these three lasers can enable ultrawideband sweeping to improve the axial OCT resolution down to 2 μm. },
keywords = {FDML, Swept source, laser, SS-OCT, OCT, Tunable lasers},
year = {2023},
doi = {10.1117/12.2652884},
URL = {https://doi.org/10.1117/12.2652884}
}
Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Tom Pfeiffer, Alexander Mlynek, Wolfgang Wieser, Alexander Chamorovskiy, Vladimir Shidlovski, and Robert Huber,
850 nm FDML: performance and challenges, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236705.
DOI:10.1117/12.2649646
Bibtex: BibTeX
@inproceedings{10.1117/12.2649646,
author = {M. Klufts and S. Lotz and M. A. Bashir and T. Pfeiffer and A. Mlynek and W. Wieser and A. Chamorovskiy and V. Shidlovski and R. Huber},
title = {{850 nm FDML: performance and challenges}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236705},
abstract = {We demonstrate a Fourier domain mode locked (FDML) laser centered around 850 nm with a sweeping range of 50 nm, a fundamental repetition rate of 2×416 kHz and an output power of 2 mW. A new cavity design using three chirped Fiber Bragg gratings is required to overcome sweeping limitations caused by high dispersion. Other solutions to address challenges such as high loss and high polarization mode dispersion will be discussed along with performance. A main application of this laser will be retinal imaging, but it might also be applicable for TiCo-Raman and SLIDE microscopy. },
keywords = {Swept source, FDML, Laser, Ophthalmic imaging, OCT, 800 nm, retinal imaging, light sources},
year = {2023},
doi = {10.1117/12.2649646},
URL = {https://doi.org/10.1117/12.2649646}
}

2022

Marie Klufts, Simon Lotz, Muhammad Asim Bashir, Sebastian Karpf, and Robert Huber,
Ultra-high-accuracy chromatic dispersion measurement in optical fibers, in Optical Components and Materials XIX , Shibin Jiang and Michel J. F. Digonnet, Eds. SPIE, 032022. pp. 119970L.
DOI:10.1117/12.2608773
Bibtex: BibTeX
@inproceedings{10.1117/12.2608773,
author = {M. Klufts and S. Lotz and M. Bashir and S. Karpf and R. Huber},
title = {{Ultra-high-accuracy chromatic dispersion measurement in optical fibers}},
volume = {11997},
booktitle = {Optical Components and Materials XIX},
editor = {Shibin Jiang and Michel J. F. Digonnet},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {119970L},
abstract = {The chromatic dispersion in optical fibers is a key property for applications where a broadband light source is used and the timing of each individual wavelength is crucial. Counteracting the timing offset introduced by the fiber is a challenge in many applications especially in mode locked lasers. The dispersion parameters need to be measured with high precision. The length of the fiber, the temperature, and the used wavelength will highly impact the amount of dispersion and the accuracy of the measurement. We developed an ultra-high-accuracy dispersion measurement setup at 1080 ± 50 nm considering all the parameters that may influence the measurement. It is based on a home-built wavelength tunable laser where the output is modulated by an electro-optical modulator connected to a 24 GSamples/s arbitrary waveform generator to a complex pattern consisting of pulses and a 4 GHz sine wave. After passing through the fiber the signal is measured with an 80 GSamples/s real time oscilloscope. The fiber’s temperature is controlled to allow for reproducible measurements over several days and we achieve timing measurement accuracies down to ~200 fs. We also present the performance of the setup at ~850 nm. We will discuss and quantify all effects which can negatively impact the system accuracy and we will report on more cost-effective options using lower performance equipment.},
keywords = {Dispersion measurement, Chromatic dispersion, fiber dispersion measurement, optical component characterization, tunable laser, FDML},
year = {2022},
doi = {10.1117/12.2608773},
URL = {https://doi.org/10.1117/12.2608773}
}