Wolfgang Draxinger
Doktorand / PhD Student
AG Huber
Universität zu Lübeck
Institut für Biomedizinische Optik
Peter-Monnik-Weg 4
23562 Lübeck
Gebäude 81,
Raum 72
Email: | wolfgang.draxinger(at)uni-luebeck.de |
Phone: | +49 451 3101 3229 |
Fax: | +49 451 3101 3233 |
2021
Dirk
Theisen-Kunde,
Wolfgang
Draxinger,
Matteo M.
Bonsanto,
Paul
Strenge,
Nicolas
Detrez,
Robert
Huber, and
Ralf
Brinkmann,
1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery, in European Conferences on Biomedical Optics 2021 (ECBO) , Optica Publishing Group, 2021. pp. ETu4A.2.
1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery, in European Conferences on Biomedical Optics 2021 (ECBO) , Optica Publishing Group, 2021. pp. ETu4A.2.
Weblink: | https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2 |
Datei: | abstract.cfm |
Bibtex: | @inproceedings{Theisen-Kunde:21, author = {D. Theisen-Kunde and W. Draxinger and M. M. Bonsanto and Paul Strenge and Nicolas Detrez and R. Huber and R. Brinkmann}, booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)}, journal = {European Conferences on Biomedical Optics 2021 (ECBO)}, keywords = {Clinical applications; Fourier domain mode locking; Optical coherence tomography; Optical fibers; Three dimensional reconstruction; White light}, pages = {ETu4A.2}, publisher = {Optica Publishing Group}, title = {1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery}, year = {2021}, url = {https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2}, doi = {10.1364/ECBO.2021.ETu4A.2}, abstract = {A 1.6 MHz Fourier-domain mode-locked (FDML) optical coherence tomography (OCT) was adapted to an OR-Microscope for clinical application in neurosurgery. 3D-volume scans at video rate are envisaged with approximately 50{\textmu}m lateral and 20{\textmu}m axial resolution.}, } |
2020
Tom
Pfeiffer,
Madita
Göb,
Wolfgang
Draxinger,
Sebastian
Karpf,
Jan Philip
Kolb, and
Robert
Huber,
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
DOI: | 10.1364/BOE.402477 |
Bibtex: | @article{Pfeiffer:20, author = {T. Pfeiffer, M. G\"{o}b, W. Draxinger, S. Karpf, J.P. Kolb and R. Huber}, journal = {Biomed. Opt. Express}, keywords = {AG-Huber_OCT; High speed imaging; Image quality; Optical coherence tomography; Swept lasers; Swept sources; Systems design}, number = {11}, pages = {6799--6811}, publisher = {OSA}, title = {Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging}, volume = {11}, month = {Nov}, year = {2020}, doi = {10.1364/BOE.402477}, abstract = {In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to \&\#x223C;100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121\&\#x00A0;dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.}, } |
Matthias
Strauch,
Jan Philip
Kolb,
Daniel
Weng,
Melanie
Wacker,
Wolfgang
Draxinger,
Nadine
Merg,
Jennifer
Hundt,
Sebastian
Karpf, and
Robert
Huber,
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Weblink: | https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf |
Bibtex: | @InProceedings{Strauch2020, author = {M. Strauch, J.P. Kolb, D. Weng, M. Wacker, W. Draxinger, N. Merg, J. Hundt, S. Karpf and R. Huber}, booktitle = {104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie}, title = {Two-photon microscopy for sectioning-free virtual {H&E} imaging}, URL = {https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf}, year = {2020}, keywords = {AG-Huber_NL}, } |
Christin
Grill,
Simon
Lotz,
Torben
Blömker,
Dominic
Kastner,
Tom
Pfeiffer,
Mark
Schmidt,
Wolfgang
Draxinger,
Christian
Jirauschek, and
Robert
Huber,
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
DOI: | 10.1117/12.2545794 |
Bibtex: | @inproceedings{Grill2020, author = {C. {Grill}, S. {Lotz}, T. {Blömker}, D. {Kastner}, T. {Pfeiffer}, S. {Karpf}, M. {Schmidt}, W. {Draxinger}, C. {Jirauschek} and R. {Huber}}, title = {{Beating of two FDML lasers in real time}}, volume = {11260}, booktitle = {Fiber Lasers XVII: Technology and Systems}, editor = {Liang Dong}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {132 -- 138}, keywords = {AG-Huber_FDML, FDML laser, fiber lasers, beat signal, OCT, Optical Coherence Tomography, Fourier domain mode locking}, year = {2020}, doi = {10.1117/12.2545794}, } |
Paul
Strenge,
Birgit
Lange,
Christin
Grill,
Wolfgang
Draxinger,
Matteo M.
Bonsanto,
Christian
Hagel,
Robert
Huber, and
Ralf
Brinkmann,
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
DOI: | 10.1117/12.2545659 |
Bibtex: | @inproceedings{Strenge2020, author = {P. Strenge and B. Lange and C. Grill and W. Draxinger and M. M. Bonsanto and C. Hagel and R. Huber and R. Brinkmann}, title = {{Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis}}, volume = {11228}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {82 -- 89}, keywords = {AG-Huber_OCT, Optical coherence tomography, OCT, FDML Laser, MHz-OCT, brain tumor, brain imaging, neurosurgery}, year = {2020}, URL = { https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11228/112282O/Segmented-OCT-data-set-for-depth-resolved-brain-tumor-detection/10.1117/12.2545659.short} } |
2019
Julian
Klee,
Jan Philip
Kolb,
Christin
Grill,
Wolfgang
Draxinger,
Tom
Pfeiffer, and
Robert
Huber,
Zero roll-off retinal MHz-OCT using an FDML-laser, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , SPIE, 072019. pp. 110780S.
Zero roll-off retinal MHz-OCT using an FDML-laser, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , SPIE, 072019. pp. 110780S.
DOI: | 10.1117/12.2527034 |
Datei: | 12.2527034.short |
Bibtex: | @inproceedings{10.1117/12.2527034, author = {Julian Klee and Jan Philip Kolb and Christin Grill and Wolfgang Draxinger and Tom Pfeiffer and Robert Huber}, title = {{Zero roll-off retinal MHz-OCT using an FDML-laser}}, volume = {11078}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media III}, editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {110780S}, abstract = {Optical coherence tomography (OCT) applications like ultra-widefield and full eye-length imaging are of high interest for various diagnostic purposes. In swept-source OCT these techniques require a swept light source, which is coherent over the whole imaging depth. We present a zero roll-off 1060 nm Fourier Domain Mode Locked-Laser (FDML-Laser) for retinal OCT imaging at 1.7 MHz A-scan rate and first long-range imaging results with it. Several steps such as improved dispersion compensation and frequency regulation were performed and will be discussed. Besides virtually no loss in OCT signal over the maximum depth range of 4.6 mm and very good dynamic range was observed. Roll-off measurements show no decrease of the point-spread function (PSF), while maintaining a high dynamic range.}, keywords = {optical coherence tomography, OCT, tunable laser, Fourier Domain Mode Locking, FDML, MHz OCT}, year = {2019}, doi = {10.1117/12.2527034}, URL = {https://doi.org/10.1117/12.2527034} } |
Yoko
Miura,
Wolfgang
Draxinger,
Christin
Grill,
Tom
Pfeiffer,
Salvatore
Grisanti, and
Robert
Huber,
MHz-OCT for low latency virtual reality guided surgery: first wet lab experiments on ex-vivo porcine eye, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 072019. pp. 110780E.
MHz-OCT for low latency virtual reality guided surgery: first wet lab experiments on ex-vivo porcine eye, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 072019. pp. 110780E.
DOI: | 10.1117/12.2527123 |
Bibtex: | @inproceedings{10.1117/12.2527123, author = {Yoko Miura and Wolfgang Draxinger and Christin Grill and Tom Pfeiffer and Salvatore Grisanti and Robert Huber}, title = {{MHz-OCT for low latency virtual reality guided surgery: first wet lab experiments on ex-vivo porcine eye }}, volume = {11078}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media III}, editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {110780E}, abstract = {MHz-OCT systems based on FDML swept laser sources combined with the massive parallel processing capabilities of modern computer hardware enable volumetric imaging, processing and stereoscopic display at video rates. The increasing image quality and speed might enable new fields of application where the volumetric OCT completely replaces stereoscopic microscopes instead of being a mere supplement. Aside from the depth resolving capability, a particular advantage is the ability to display a whole image volume from arbitrary points of view without the need to move the actual microscope or to rotate the patient’s eye. Purely digital microscopy is already offered as alternative to traditional through-an-eyepiece surgical microscope. We explore the use of virtual reality to present digital OCT microscopy images to a trained surgeon, carrying out a series of surgical procedures ex-vivo on a porcine eye model.}, keywords = {virtual reality, surgery guidance , real-time OCT, user experience}, year = {2019}, doi = {10.1117/12.2527123}, URL = {https://doi.org/10.1117/12.2527123} } |
Jan Philip
Kolb,
Wolfgang
Draxinger,
Julian
Klee,
Tom
Pfeiffer,
Matthias
Eibl,
Thomas
Klein,
Wolfgang
Wieser, and
Robert
Huber,
Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates, PLOS ONE , vol. 14, no. 7, pp. e0213144, 03 2019.
Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates, PLOS ONE , vol. 14, no. 7, pp. e0213144, 03 2019.
DOI: | 10.1371/journal.pone.0213144 |
Bibtex: | @article{Kolb2019, author = {Kolb, J P;Draxinger, W;Klee, J;Pfeiffer, T;Eibl, M;Klein, T;Wieser, W and Huber, R}, title = {Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates}, journal = {J pone}, keywords = {AG-Huber_OCT}, url = {https://doi.org/10.1371/journal.pone.0213144}, pages = {e0213144}, ISSN = {1932-6203}, year = {2019}, type = {Journal Article} } |
Jan Philip
Kolb,
Daniel
Weng,
Hubertus
Hakert,
Matthias
Eibl,
Wolfgang
Draxinger,
Tobias
Meyer-Zedler,
Thomas
Gottschall,
Ralf
Brinkmann,
Reginald
Birngruber,
Jürgen
Popp,
Jens
Limpert,
Sebastian
Karpf, and
Robert
Huber,
Virtual HE histology by fiber-based picosecond two-photon microscopy, in Multiphoton Microscopy in the Biomedical Sciences XIX , Ammasi Periasamy; Peter T. C. So; Karsten König, Eds. International Society for Optics and Photonics, 022019. pp. 108822F.
Virtual HE histology by fiber-based picosecond two-photon microscopy, in Multiphoton Microscopy in the Biomedical Sciences XIX , Ammasi Periasamy; Peter T. C. So; Karsten König, Eds. International Society for Optics and Photonics, 022019. pp. 108822F.
DOI: | 10.1117/12.2507866 |
Bibtex: | @inproceedings{10.1117/12.2507866, author = {Jan Philip Kolb and Daniel Weng and Hubertus Hakert and Matthias Eibl and Wolfgang Draxinger and Tobias Meyer and Thomas Gottschall and Ralf Brinkmann and Reginald Birngruber and J{\"u}rgen Popp and Jens Limpert and Sebastian Nino Karpf and Robert Huber}, title = {{Virtual HE histology by fiber-based picosecond two-photon microscopy}}, volume = {10882}, booktitle = {Multiphoton Microscopy in the Biomedical Sciences XIX}, editor = {Ammasi Periasamy and Peter T. C. So and Karsten K{\"o}nig}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {108822F}, abstract = {Two-Photon Microscopy (TPM) can provide three-dimensional morphological and functional contrast in vivo. Through proper staining, TPM can be utilized to create virtual, HE equivalent images and thus can improve throughput in histology-based applications. We previously reported on a new light source for TPM that employs a compact and robust fiber-amplified, directly modulated laser. This laser is pulse-to-pulse wavelength switchable between 1064 nm, 1122 nm, and 1186 nm with an adjustable pulse duration from 50ps to 5ns and arbitrary repetition rates up to 1MHz at kW-peak powers. Despite the longer pulse duration, it can achieve similar average signal levels compared to fs-setups by lowering the repetition rate to achieve similar cw and peak power levels. The longer pulses lead to a larger number of photons per pulse, which yields single shot fluorescence lifetime measurements (FLIM) by applying a fast 4 GSamples/s digitizer. In the previous setup, the wavelengths were limited to 1064 nm and longer. Here, we use four wave mixing in a non-linear photonic crystal fiber to expand the wavelength range down to 940 nm. This wavelength is highly suitable for imaging green fluorescent proteins in neurosciences and stains such as acridine orange (AO), eosin yellow (EY) and sulforhodamine 101 (SR101) used for histology applications. In a more compact setup, we also show virtual HE histological imaging using a direct 1030 nm fiber MOPA.}, keywords = {Multiphoton Microscopy, Four Wave Mixing, FWM, Histology, Laser, Non Linear Microscopy, Two Photon Microscopy, JenLab Young Investigator Award}, year = {2019}, doi = {10.1117/12.2507866}, URL = {https://doi.org/10.1117/12.2507866} } |
Matthias
Strauch,
Jan Philip
Kolb,
Daniel
Weng,
Melanie
Wacker,
Wolfgang
Draxinger,
Sebastian
Karpf, and
Robert
Huber,
Sectioning-Free Virtual H&E Imaging of Tissue Samples with Two-Photon Microscopy, in 31st Congress of the ESP , 2019.
Sectioning-Free Virtual H&E Imaging of Tissue Samples with Two-Photon Microscopy, in 31st Congress of the ESP , 2019.
DOI: | 10.1007/s00428-019-02631-8 |
Bibtex: | @InProceedings{Strauch2019, author = {Strauch, Matthias and Kolb, Jan Philip and Weng, Daniel and Wacker, Melanie and Draxinger, Wolfgang and Karpf, Sebastian and Huber, Robert}, booktitle = {31st Congress of the ESP}, title = {Sectioning-Free Virtual H&E Imaging of Tissue Samples with Two-Photon Microscopy}, year = {2019}, keywords = {AG-Huber_NL}, } |
2018
Hinnerk
Schulz-Hildebrandt,
Tom
Pfeiffer,
Tim
Eixmann,
Sabrina
Lohmann,
Martin
Ahrens,
Josua
Rehra,
Wolfgang
Draxinger,
Peter
König,
Robert
Huber, and
Gereon
Hüttmann,
High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography, Opt. Lett. , vol. 43, no. 18, pp. 4386-4389, 09 2018. Optica Publishing Group.
High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography, Opt. Lett. , vol. 43, no. 18, pp. 4386-4389, 09 2018. Optica Publishing Group.
DOI: | 10.1364/OL.43.004386 |
Bibtex: | @article{Schulz-Hildebrandt:18, author = {Hinnerk Schulz-Hildebrandt and Tom Pfeiffer and Tim Eixmann and Sabrina Lohmann and Martin Ahrens and Joshua Rehra and Wolfgang Draxinger and Peter K\"{o}nig and Robert Huber and Gereon H\"{u}ttmann}, journal = {Opt. Lett.}, keywords = {Fiber optics imaging; Endoscopic imaging; Medical and biological imaging; Optical coherence tomography; Fourier domain mode locking; Image quality; Optical coherence tomography; Single mode fibers; Step index fibers; Three dimensional imaging}, number = {18}, pages = {4386--4389}, publisher = {Optica Publishing Group}, title = {High-speed fiber scanning endoscope for volumetric multi-megahertz optical coherence tomography}, volume = {43}, month = {Sep}, year = {2018}, url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-43-18-4386}, doi = {10.1364/OL.43.004386}, abstract = {We present a forward-viewing fiber scanning endoscope (FSE) for high-speed volumetric optical coherence tomography (OCT). The reduction in size of the probe was achieved by substituting the focusing optics by an all-fiber-based imaging system which consists of a combination of scanning single-mode fibers, a glass spacer, made from a step-index multi-mode fiber, and a gradient-index fiber. A lateral resolution of 11 $\mu$m was achieved at a working distance of 1.2 mm. The newly designed piezo-based FSE has an outer diameter of 1.6 mm and a rigid length of 13.5 mm. By moving the whole imaging optic in spirals for scanning the sample, the beam quality remains constant over the entire field of view with a diameter of 0.8 mm. The scanning frequency was adjusted to 1.22 kHz for use with a 3.28 MHz Fourier domain mode locked OCT system. Densely sampled volumes have been imaged at a rate of 6 volumes per second.}, } |
Tom
Pfeiffer,
Markus
Petermann,
Wolfgang
Draxinger,
Christian
Jirauschek, and
Robert
Huber,
Ultra low noise Fourier domain mode locked laser for high quality magahertz optical coherence tomography, Biomed. Opt. Express , vol. 9, no. 9, pp. 4130-4148, 09 2018. Optica Publishing Group.
Ultra low noise Fourier domain mode locked laser for high quality magahertz optical coherence tomography, Biomed. Opt. Express , vol. 9, no. 9, pp. 4130-4148, 09 2018. Optica Publishing Group.
DOI: | 10.1364/BOE.9.004130 |
Bibtex: | @article{Pfeiffer:18, author = {Tom Pfeiffer and Markus Petermann and Wolfgang Draxinger and Christian Jirauschek and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Fiber optics imaging; Lasers, fiber; Optical coherence tomography; Laser stabilization ; Lasers, frequency modulated ; Analog to digital converters; Dark solitons; Image quality; Laser modes; Mode locking; Optical coherence tomography}, number = {9}, pages = {4130--4148}, publisher = {Optica Publishing Group}, title = {Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography}, volume = {9}, month = {Sep}, year = {2018}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-9-9-4130}, doi = {10.1364/BOE.9.004130}, abstract = {We investigate the origin of high frequency noise in Fourier domain mode locked (FDML) lasers and present an extremely well dispersion compensated setup which virtually eliminates intensity noise and dramatically improves coherence properties. We show optical coherence tomography (OCT) imaging at 3.2 MHz A-scan rate and demonstrate the positive impact of the described improvements on the image quality. Especially in highly scattering samples, at specular reflections and for strong signals at large depth, the noise in optical coherence tomography images is significantly reduced. We also describe a simple model that suggests a passive physical stabilizing mechanism that leads to an automatic compensation of remaining cavity dispersion in FDML lasers.}, } |
2017
Tianshi
Wang,
Tom
Pfeiffer,
Min
Wu,
Wolfgang
Wieser,
Gaetano
Amenta,
Wolfgang
Draxinger,
Antonius F. W.
van der Steen,
Robert
Huber, and
Gijs
van Soest,
Thermo-elastic optical coherence tomography, Optica Publishing Group, 092017. pp. 3466-3469.
Thermo-elastic optical coherence tomography, Optica Publishing Group, 092017. pp. 3466-3469.
DOI: | 10.1364/OL.42.003466 |
Bibtex: | @article{Wang:17, author = {Tianshi Wang and Tom Pfeiffer and Min Wu and Wolfgang Wieser and Gaetano Amenta and Wolfgang Draxinger and Antonius F. W. van der Steen and Robert Huber and Gijs van Soest}, journal = {Opt. Lett.}, keywords = {Imaging systems; Medical and biological imaging; Optical coherence tomography; Lasers, pulsed ; Fourier domain mode locking; Functional imaging; Laser beams; Nanosecond pulses; Optical coherence tomography; Phantom studies}, number = {17}, pages = {3466--3469}, publisher = {Optica Publishing Group}, title = {Thermo-elastic optical coherence tomography}, volume = {42}, month = {Sep}, year = {2017}, url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-42-17-3466}, doi = {10.1364/OL.42.003466}, abstract = {The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.}, } |
Tom
Pfeiffer,
Wolfgang
Draxinger,
Christin
Grill, and
Robert
Huber,
Long-range live 3D-OCT at different spectral zoom levels, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160L.
Long-range live 3D-OCT at different spectral zoom levels, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160L.
DOI: | 10.1117/12.2287484 |
Bibtex: | @inproceedings{10.1117/12.2287484, author = {Tom Pfeiffer and Wolfgang Draxinger and Christin Grill and Robert Huber}, title = {{Long-range live 3D-OCT at different spectral zoom levels}}, volume = {10416}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media II}, editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {104160L}, abstract = {We demonstrate that the 3.2 MHz a-scan rate and the improved coherence of our new low noise FDML laser enables live 3D-OCT with different spectral zooms and up to 10 cm of imaging range.}, keywords = {Optical coherence tomography, Fourier Domain Mode Locking, FDML, OCT}, year = {2017}, doi = {10.1117/12.2287484}, URL = {https://doi.org/10.1117/12.2287484} } |
Tianshi
Wang,
Tom
Pfeiffer,
Min
Wu,
Wolfgang
Wieser,
Wolfgang
Draxinger,
Antonius F. W.
van der Steen,
Robert
Huber, and
Gijs
van Soest,
Short pulse laser induced thermo-elastic deformation imaging, in Optical Interactions with Tissue and Cells XXVIII , E. Duco Jansen and Hope Thomas Beier, Eds. SPIE, 022017. pp. 100620C.
Short pulse laser induced thermo-elastic deformation imaging, in Optical Interactions with Tissue and Cells XXVIII , E. Duco Jansen and Hope Thomas Beier, Eds. SPIE, 022017. pp. 100620C.
DOI: | 10.1117/12.2251502 |
Bibtex: | @inproceedings{10.1117/12.2251502, author = {Tianshi Wang and Tom Pfeiffer and Min Wu and Wolfgang Wieser and Wolfgang Draxinger and Antonius F. W. van der Steen and Robert Huber and Gijs van Soest}, title = {{Short pulse laser induced thermo-elastic deformation imaging}}, volume = {10062}, booktitle = {Optical Interactions with Tissue and Cells XXVIII}, editor = {E. Duco Jansen and Hope Thomas Beier}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {100620C}, abstract = {Absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue, i.e. a sub-micrometer scale displacement happens within a couple of microseconds. In this study, we initially investigate the depth-resolved deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. Functional images can be reconstructed based on the detected deformation, which enables a new imaging modality called thermo-elastic deformation imaging (TDI). Our results show that the associated displacement is related to the optical absorption of the short laser pulses. The TDI images can provide tissue type information in addition to the conventional OCT images.}, keywords = {thermal-elastic deformation, optical coherence tomography}, year = {2017}, doi = {10.1117/12.2251502}, URL = {https://doi.org/10.1117/12.2251502} } |
Tom
Pfeiffer,
Wolfgang
Draxinger,
Wolfgang
Wieser,
Thomas
Klein,
Markus
Petermann, and
Robert
Huber,
Analysis of FDML lasers with meter range coherence, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 2017. pp. 100531T.
Analysis of FDML lasers with meter range coherence, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 2017. pp. 100531T.
DOI: | 10.1117/12.2254792 |
Bibtex: | @inproceedings{10.1117/12.2254792, author = {Tom Pfeiffer and Wolfgang Draxinger and Wolfgang Wieser and Thomas Klein and Markus Petermann and Robert Huber}, title = {{Analysis of FDML lasers with meter range coherence}}, volume = {10053}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI}, editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {100531T}, abstract = {FDML lasers provide sweep rates in the MHz range at wide optical bandwidths, making them ideal sources for high speed OCT. Recently, at lower speed, ultralong-range swept-source OCT has been demonstrated using a tunable vertical cavity surface emitting laser (VCSEL) and also using a Vernier-tunable laser. These sources provide relatively high sweep rates and meter range coherence lengths. In order to achieve similar coherence, we developed an extremely well dispersion compensated Fourier Domain Mode Locked (FDML) laser, running at 3.2 MHz sweep rate and 120 nm spectral bandwidth. We demonstrate that this laser offers meter range coherence and enables volumetric long range OCT of moving objects.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT}, year = {2017}, doi = {10.1117/12.2254792}, URL = {https://doi.org/10.1117/12.2254792} } |
2015
Kathrin J.
Mohler,
Wolfgang
Draxinger,
Thomas
Klein,
Jan Philip
Kolb,
Wolfgang
Wieser,
Christos
Haritoglou,
Anselm
Kampik,
James G.
Fujimoto,
Aljoscha
Neubauer,
Armin
Wolf, and
Robert
Huber,
Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm60° High-Definition MHz-OCT Imaging of the Choroid, Investigative Ophthalmology & Visual Science , vol. 56, no. 11, pp. 6284--6293, Okt. 2015.
Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm60° High-Definition MHz-OCT Imaging of the Choroid, Investigative Ophthalmology & Visual Science , vol. 56, no. 11, pp. 6284--6293, Okt. 2015.
DOI: | 10.1167/iovs.15-16670 |
Bibtex: | @article{10.1167/iovs.15-16670, author = {Mohler, Kathrin J. and Draxinger, Wolfgang and Klein, Thomas and Kolb, Jan Philip and Wieser, Wolfgang and Haritoglou, Christos and Kampik, Anselm and Fujimoto, James G. and Neubauer, Aljoscha S. and Huber, Robert and Wolf, Armin}, title = "{Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm}", journal = {Investigative Ophthalmology & Visual Science}, volume = {56}, number = {11}, pages = {6284-6293}, year = {2015}, month = {10}, abstract = "{ To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ocular pathology are presented. Coregistered ChT maps, choroidal summation maps, and depth-resolved en face images referenced to either the retinal pigment epithelium or the choroidal–scleral interface were generated using manual segmentation. Wide-field ChT maps showed a large inter- and intraindividual variance in peripheral and central ChT. In only four of the nine eyes, the location with the largest ChT was coincident with the fovea. The anatomy of the large lumen vessels of the outer choroid seems to play a major role in determining the global ChT pattern. Focal ChT changes with large thickness gradients were observed in some eyes. Different ChT and vascular patterns could be visualized over ∼60° in patients for the first time using OCT. Due to focal ChT changes, a high density of thickness measurements may be favorable. High-definition depth-resolved en face images are complementary to cross sections and thickness maps and enhance the interpretation of different ChT patterns. }", issn = {1552-5783}, doi = {10.1167/iovs.15-16670}, url = {https://doi.org/10.1167/iovs.15-16670}, eprint = {https://arvojournals.org/arvo/content\_public/journal/iovs/934564/i1552-5783-56-11-6284.pdf}, } |
Jan Philip
Kolb,
Thomas
Klein,
Wolfgang
Wieser,
Wolfgang
Draxinger, and
Robert
Huber,
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 95410Z.
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 95410Z.
DOI: | 10.1117/12.2183768 |
Bibtex: | @inproceedings{10.1117/12.2183768, author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber}, title = {{High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second}}, volume = {9541}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media}, editor = {Brett E. Bouma and Maciej Wojtkowski}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {95410Z}, abstract = {We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz-OCT}, year = {2015}, doi = {10.1117/12.2183768}, URL = {https://doi.org/10.1117/12.2183768} } |
Wolfgang
Wieser,
Thomas
Klein,
Wolfgang
Draxinger, and
Robert
Huber,
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 954116.
Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 954116.
DOI: | 10.1117/12.2183431 |
Bibtex: | @inproceedings{10.1117/12.2183431, author = {Wolfgang Wieser and Thomas Klein and Wolfgang Draxinger and Robert Huber}, title = {{Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm}}, volume = {9541}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media}, editor = {Brett E. Bouma and Maciej Wojtkowski}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {954116}, abstract = {While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.}, keywords = {OCT, optical coherence tomography, swept laser, wavelength-swept laser, fiber laser, MHz-OCT, Fourier-domain mode-locking, FDML}, year = {2015}, doi = {10.1117/12.2183431}, URL = {https://doi.org/10.1117/12.2183431} } |
Jan Philip
Kolb,
Thomas
Klein,
Wolfgang
Wieser,
Wolfgang
Draxinger, and
Robert
Huber,
Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 931202.
Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 931202.
DOI: | 10.1117/12.2077147 |
Bibtex: | @inproceedings{10.1117/12.2077147, author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber}, title = {{Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s}}, volume = {9312}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX}, editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {931202}, abstract = {Full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate is presented. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan. The volume rates vary between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode lockng, FDML, MHz OCT}, year = {2015}, doi = {10.1117/12.2077147}, URL = {https://doi.org/10.1117/12.2077147} } |
2014
Wolfgang
Wieser,
Wolfgang
Draxinger,
Thomas
Klein,
Sebastian
Karpf,
Tom
Pfeiffer, and
Robert
Huber,
High definition live 3D-OCT in vivo: design and evalution of 4D-OCT engine with 1 GVoxel/s, Biomed. Opt. Express , vol. 5, no. 9, pp. 2963--77, 09 2014. Optica Publishing Group.
High definition live 3D-OCT in vivo: design and evalution of 4D-OCT engine with 1 GVoxel/s, Biomed. Opt. Express , vol. 5, no. 9, pp. 2963--77, 09 2014. Optica Publishing Group.
DOI: | 10.1364/BOE.5.002963 |
Bibtex: | @article{Wieser:14, author = {Wolfgang Wieser and Wolfgang Draxinger and Thomas Klein and Sebastian Karpf and Tom Pfeiffer and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Optical coherence tomography; Lasers, tunable; Optical coherence tomography; Endoscopic imaging; Full field optical coherence tomography; Functional imaging; Image quality; Ophthalmic imaging; Vertical cavity surface emitting lasers}, number = {9}, pages = {2963--2977}, publisher = {Optica Publishing Group}, title = {High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s}, volume = {5}, month = {Sep}, year = {2014}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-5-9-2963}, doi = {10.1364/BOE.5.002963}, abstract = {We present a 1300 nm OCT system for volumetric real-time live OCT acquisition and visualization at 1 billion volume elements per second. All technological challenges and problems associated with such high scanning speed are discussed in detail as well as the solutions. In one configuration, the system acquires, processes and visualizes 26 volumes per second where each volume consists of 320 x 320 depth scans and each depth scan has 400 usable pixels. This is the fastest real-time OCT to date in terms of voxel rate. A 51 Hz volume rate is realized with half the frame number. In both configurations the speed can be sustained indefinitely. The OCT system uses a 1310 nm Fourier domain mode locked (FDML) laser operated at 3.2 MHz sweep rate. Data acquisition is performed with two dedicated digitizer cards, each running at 2.5 GS/s, hosted in a single desktop computer. Live real-time data processing and visualization are realized with custom developed software on an NVidia GTX 690 dual graphics processing unit (GPU) card. To evaluate potential future applications of such a system, we present volumetric videos captured at 26 and 51 Hz of planktonic crustaceans and skin.}, } |
Thomas
Klein,
Wolfgang
Draxinger,
Kathrin J.
Mohler,
Jan Philip
Kolb,
Wolfgang
Wieser,
Anselm
Kampik,
Aljoscha
Neubauer,
Armin
Wolf, and
Robert
Huber,
Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 1620, 04 2014.
Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 1620, 04 2014.
Weblink: | https://iovs.arvojournals.org/article.aspx?articleid=2266882 |
Bibtex: | @article{Klein2014, author = {Klein, Thomas and Draxinger, Wolfgang and Mohler, Kathrin and Kolb, Jan Philip and Wieser, Wolfgang and Kampik, Anselm and Neubauer, Aljoscha S. and Wolf, Armin and Huber, Robert}, title = {Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT}, journal = {Investigative Ophthalmology & Visual Science}, volume = {55}, number = {13}, pages = {1620-1620}, abstract = { PurposeTo study the feasibility of simultaneous peripheral and central choroidal thickness measurement and en-face visualization in patients with a variety of diseases, using a single high-resolution wide-field MHz-OCT dataset spanning more than 50 degrees field of view. MethodsIn this retrospective study, choroidal morphology of 29 patients imaged with MHz-OCT was assessed. MHz-OCT is a custom SS-OCT operating at 1060nm and an axial line rate of 1.68MHz. The high speed, more than 30 times faster than current commercial devices, enabled a very high resolution scan protocol of 2088x1024 A-scans over a wide field of ~60 degrees. However, due to the very high speed, signal strength is lower compared to slower devices. Hence, thickness and structure maps were only created for selected datasets: The positions of Bruch’s membrane and choroid sclera junction were determined manually by a trained observer a subset of all A-scans, from which thickness and intensity maps were created. ResultsDespite relative low signal strength, the choroid sclera junction could be clearly observed over the entire unshadowed image area in 15 of 29 patients. Apart from shadowing, visibility of this junction shows strong variation even within a single dataset due to varying retinal thickness, eye-blinks, saccades and retinal curvature. Thus, thickness could be evaluated at least in some areas for all 29 patients, especially in the periphery. Moreover, choroidal thickness varied considerably intra- and interindividually. In two patients, abrupt changes of the choroid were observed in the temporal periphery, which may resemble morphology or imaging artifact. In addition to thickness, en-face choroidal structure maps were extracted from the segmented OCT datasets. Visibility of choroidal vasculature in these maps correlates with choroidal thickness. ConclusionsChoroidal thickness and structure in patients could be visualized over large areas for the first time. Due to focal choroidal thickness changes with large thickness gradients, high-density scan protocols may be favorable for OCT-based investigations of the choroid. En-face images of the choroid can be extracted from these high-resolution datasets, but the influence of choroidal thickness on the image information should be taken into account. Choroidal en-face image (top), color-coded thickness map with superimposed structural image (middle) and OCT B-frame (bottom) for two eyes (A,B).}, ISSN = {1552-5783}, url = {http://dx.doi.org/}, year = {2014}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |
Wolfgang
Wieser,
Wolfgang
Draxinger,
Thomas
Klein, and
Tom
Pfeiffer,
A 4-D OCT Engine with 1 GVoxel/s, Optics and Photonics News , vol. 25, no. 12, pp. 36, 2014. OSA.
A 4-D OCT Engine with 1 GVoxel/s, Optics and Photonics News , vol. 25, no. 12, pp. 36, 2014. OSA.
Weblink: | https://www.optica-opn.org/home/articles/volume_25/december_2014/extras/a_4-d_oct_engine_with_1_gvoxel_s/#.VcH21Pl5raw |
Bibtex: | @Article{HU_2014_Wieser_b, Title = {{A 4-D OCT Engine with 1 GVoxel/s}}, Author = {Wieser, Wolfgang and Draxinger, Wolfgang and Klein, Thomas and Karpf, Sebastian and Pfeiffer, Tom and Huber, Robert}, Journal = {Optics and Photonics News}, Year = {2014}, Month = dec, Number = {12}, Pages = {36 }, Volume = {25}, keywords = {AG-Huber_FDML, AG-Huber_OCT}, Publisher = {OSA}, Url = { http://www.osa-opn.org/home/articles/volume_25/december_2014/extras/a_4-d_oct_engine_with_1_gvoxel_s/#.VcH21Pl5raw} } |