Ramtin Rahmanzadeh, Florian Rudnitzki, Elmar Endl, and Tayyaba Hasan,
Targeted molecular effects through laser-irradiated nanoabsorbers, in Proc. SPIE , Newsrrom, SPIE, Eds. 2011.
DOI:10.1117/2.1201102.003548
Bibtex: BibTeX
@inproceedings{Hüttmann2011,
   author = {Hüttmann, Gereon and Rahmanzadeh, Ramtin and Rudnitzki, Florian and Endl, Elmar and Hasan, Tayyaba},
   title = {Targeted molecular effects through laser-irradiated nanoabsorbers},
   editor = {Newsrrom, SPIE},
   DOI = {10.1117/2.1201102.003548},
   type = {Conference Proceedings},
   year = { 2011}
}
Prakash Rai, Srivalleesha Mallidi, Xiang Zheng, Ramtin Rahmanzadeh, Youssef Mir, Stefan Elrington, Ahmat Khurshid, and Tayyaba Hasan,
Development and applications of photo-triggered theranostic agents, Adv Drug Deliv Rev , vol. 62, no. 11, pp. 1094-124, 2010.
Weblink: https://doi.org/10.1016/j.addr.2010.09.002
Bibtex: BibTeX
@article{Rai,
   author = {Rai, P. and Mallidi, S. and Zheng, X. and Rahmanzadeh, R. and Mir, Y. and Elrington, S. and Khurshid, A. and Hasan, T.},
   title = {Development and applications of photo-triggered theranostic agents},
   journal = {Adv Drug Deliv Rev},
   volume = {62},
   number = {11},
   pages = {1094-124},
   note = {Rai, Prakash
Mallidi, Srivalleesha
Zheng, Xiang
Rahmanzadeh, Ramtin
Mir, Youssef
Elrington, Stefan
Khurshid, Ahmat
Hasan, Tayyaba
Nihms238162
Adv Drug Deliv Rev. 2010 Aug 30;62(11):1094-124. Epub 2010 Sep 19.},
   abstract = {Theranostics, the fusion of therapy and diagnostics for optimizing efficacy and safety of therapeutic regimes, is a growing field that is paving the way towards the goal of personalized medicine for the benefit of patients. The use of light as a remote-activation mechanism for drug delivery has received increased attention due to its advantages in highly specific spatial and temporal control of compound release. Photo-triggered theranostic constructs could facilitate an entirely new category of clinical solutions which permit early recognition of the disease by enhancing contrast in various imaging modalities followed by the tailored guidance of therapy. Finally, such theranostic agents could aid imaging modalities in monitoring response to therapy. This article reviews recent developments in the use of light-triggered theranostic agents for simultaneous imaging and photoactivation of therapeutic agents. Specifically, we discuss recent developments in the use of theranostic agents for photodynamic-, photothermal- or photo-triggered chemotherapy for several diseases.},
   keywords = {Animals
Anti-Infective Agents/diagnostic use/therapeutic use
Antineoplastic Agents/diagnostic use/therapeutic use
Diagnostic Imaging/ methods
Drug Carriers/diagnostic use/therapeutic use
Humans
Infection/ diagnosis/ drug therapy
Nanoparticles/diagnostic use/therapeutic use
Neoplasms/ diagnosis/drug therapy/ therapy
Phototherapy/ methods},
   year = {2010}
}

Ramtin Rahmanzadeh, Prakash Rai, Jonathan Celli, Imran Rizvi, Bettina Baron-Luhr, Johannes Gerdes, and Tayyaba Hasan,
Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer, Cancer Res , vol. 70, no. 22, pp. 9234-42, 2010.
DOI:10.1158/0008-5472.CAN-10-1190
Weblink: https://doi.org/10.1016/j.addr.2010.09.002
Bibtex: BibTeX
@article{Rahmanzadeh2010,
   author = {Rahmanzadeh, R. and Rai, P. and Celli, J. P. and Rizvi, I. and Baron-Luhr, B. and Gerdes, J. and Hasan, T.},
   title = {Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer},
   journal = {Cancer Res},
   volume = {70},
   number = {22},
   pages = {9234-42},
   note = {Using Smart Source Parsing
Nov 15; Epub 2010 Nov 2},
   abstract = {Targeting molecular markers and pathways implicated in cancer cell growth is a promising avenue for developing effective therapies. Although the Ki-67 protein (pKi-67) is a key marker associated with aggressively proliferating cancer cells and poor prognosis, its full potential as a therapeutic target has never before been successfully shown. In this regard, its nuclear localization presents a major hurdle because of the need for intracellular and intranuclear delivery of targeting and therapeutic moieties. Using a liposomally encapsulated construct, we show for the first time the specific delivery of a Ki-67-directed antibody and subsequent light-triggered death in the human ovarian cancer cell line OVCAR-5. Photoimmunoconjugate-encapsulating liposomes (PICEL) were constructed from anti-pKi-67 antibodies conjugated to fluorescein 5(6)-isothiocyanate, as a photoactivatable agent, followed by encapsulation in noncationic liposomes. Nucleolar localization of the PICELs was confirmed by confocal imaging. Photodynamic activation with PICELs specifically killed pKi-67-positive cancer cells both in monolayer and in three-dimensional (3D) cultures of OVCAR-5 cells, with the antibody TuBB-9 targeting a physiologically active form of pKi-67 but not with MIB-1, directed to a different epitope. This is the first demonstration of (a) the exploitation of Ki-67 as a molecular target for therapy and (b) specific delivery of an antibody to the nucleolus in monolayer cancer cells and in an in vitro 3D model system. In view of the ubiquity of pKi-67 in proliferating cells in cancer and the specificity of targeting in 3D multicellular acini, these findings are promising and the approach merits further investigation.},
   year = {2010}
}
Ramtin Rahmanzadeh, Prakash Rai, Johannes Gerdes, and Tayyaba Hasan,
Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells, Samuel, Achilefu and Ramesh, Raghavachari, Eds. SPIE, 2010. pp. 757602.
DOI:10.1117/12.843850
Bibtex: BibTeX
@inproceedings{Rahmanzadeh,
   author = {Rahmanzadeh, Ramtin and Rai, Prakash and Gerdes, Johannes and Hasan, Tayyaba},
   title = {Targeted light-inactivation of the Ki-67 protein using theranostic liposomes leads to death of proliferating cells},
   editor = {Samuel, Achilefu and Ramesh, Raghavachari},
   publisher = {SPIE},
   volume = {7576},
   pages = {757602},
year = {2010},
doi ={10.1117/12.843850},
keywords = {Nanotechnology, Ovarian Cancer, Proliferative Index, Photodynamic Therapy,Antibody}

}
Gereon Hüttmann, Cuiping Yao, Xiaochao Qu, Zhenxi Zhang, and Ramtin Rahmanzadeh,
Influence of Laser Parameters on Membrane Permeability with Nanoparticles and Targeted Antibody Transfection, J Biomed Opt , vol. 14, pp. 054034, 2009.
DOI:10.1117/1.3253320
Bibtex: BibTeX
@article{Yao,
   author = {Yao, C and Qu, X. and Zhang, Z. and B., Yao and Hüttmann, G and Rahmanzadeh, R.},
   title = {Influence of Laser Parameters on Membrane Permeability with Nanoparticles and Targeted Antibody Transfection},
   journal = {J Biomed Opt},
   volume = {14},
   pages = {054034},
   note = {Journal article},
   year = {2009}
}
Cuiping Yao, Zhenxi Zhang, Ramtin Rahmanzadeh, and Gereon Hüttmann,
Laser-based gene transfection and gene therapy, IEEE Trans Nanobioscience , vol. 7, no. 2, pp. 111-9, 2008.
DOI:10.1109/TNB.2008.2000742
Bibtex: BibTeX
@article{Yao,
   author = {Yao, C. P. and Zhang, Z. X. and Rahmanzadeh, R. and Huettmann, G.},
   title = {Laser-based gene transfection and gene therapy},
   journal = {IEEE Trans Nanobioscience},
   volume = {7},
   number = {2},
   pages = {111-9},
   note = {Yao, C P
Zhang, Z X
Rahmanzadeh, R
Huettmann, G
Research Support, Non-U.S. Gov't
Review
United States
IEEE Trans Nanobioscience. 2008 Jun;7(2):111-9.},
   abstract = {The plasma membrane of mammalian cells can be transiently permeablized by optical means and exogenous materials or genes can be introduced into the cytoplasm of living cells. Until now, few mechanisms were exploited for the manipulation: laser is directly and tightly focused on the cells for optoinjection, laser-induced stress waves, photochemical internalization, and irradiation of selective cell targeting with light-absorbing particles. During the past few years, extensive progress and numerous breakthroughs have been made in this area of research. This review covers four different laser-assisted transfection techniques and their advantages and disadvantages. Universality towards various cell lines is possibly the main advantage of laser-assisted optoporation in comparison with presently existing methods of cell transfection.},
   keywords = {Cell Membrane/ radiation effects
DNA/ administration & dosage/ pharmacokinetics
Gene Therapy/ methods
Lasers
Transfection/ methods},
   year = {2008}
}
Jonathan R. Phillips, Eberhard Fischer, Miriam Baron, Niels Dries, Fabio Facchinelli, Michael Kutzer, Ramtin Rahmanzadeh, Daniela Remus, and Dorothea Bartels,
Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests, in Plant J , 2008, pp. 938-48.
DOI:10.1111/j.1365-313X.2008.03478.x
Bibtex: BibTeX
@incollection{Phillips,
   author = {Phillips, J. R. and Fischer, E. and Baron, M. and van den Dries, N. and Facchinelli, F. and Kutzer, M. and Rahmanzadeh, R. and Remus, D. and Bartels, D.},
   title = {Lindernia brevidens: a novel desiccation-tolerant vascular plant, endemic to ancient tropical rainforests},
   booktitle = {Plant J},
   volume = {54},
   edition = {2008/03/19},
   pages = {938-48},
   note = {Phillips, Jonathan R
Fischer, Eberhard
Baron, Miriam
van den Dries, Niels
Facchinelli, Fabio
Kutzer, Michael
Rahmanzadeh, Ramtin
Remus, Daniela
Bartels, Dorothea
England
Plant J. 2008 Jun;54(5):938-48. Epub 2008 Mar 13.},
   abstract = {A particular adaptation to survival under limited water availability has been realized in the desiccation-tolerant resurrection plants, which tend to grow in a habitat with seasonal rainfall and long dry periods. One of the best-studied examples is Craterostigma plantagineum. Here we report an unexpected finding: Lindernia brevidens, a close relative of C. plantagineum, exhibits desiccation tolerance, even though it is endemic to the montane rainforests of Tanzania and Kenya, where it never experiences seasonal dry periods. L. brevidens has been found exclusively in two fragments of the ancient Eastern Arc Mountains, which were protected from the devastating Pleistocene droughts by the stable Indian Ocean temperature. Analysis of the microhabitat reveals that L. brevidens is found in the same habitat as hygrophilous plant species, which further indicates that the plant never dries out completely. The objective of this investigation was to address whether C. plantagineum and L. brevidens have desiccation-related pathways in common, or whether L. brevidens has acquired novel pathways. A third, closely related, desiccation-sensitive species, Lindernia subracemosa, has been included for comparison. Mechanisms that confer cellular protection during extreme water loss are well conserved between C. plantagineum and L. brevidens, including the interconversion of 2-octulose to sucrose within the two desiccation-tolerant species. Furthermore, transcriptional control regions of desiccation-related genes belonging to the late embryogenesis abundant (LEA) protein family are also highly conserved. We propose that L. brevidens is a neoendemic species that has retained desiccation tolerance through genome stability, despite tolerance being superfluous to environmental conditions.},
   keywords = {Adaptation, Physiological
Gene Expression Profiling
Genome, Plant
Lamiaceae/genetics/metabolism/ physiology
Sucrose/metabolism
Tropical Climate
Water},
   year = {2008}
}
Xiaochao Qu, Jing Wang, Zhenxi Zhang, Norbert Koop, Ramtin Rahmanzadeh, and Gereon Hüttmann,
Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes, vol. 13, no. 3, pp. 031217, 2008.
DOI:10.1117/1.2942373
ISBN:1083-3668 (Print) 1083-3668 (Linking)
Bibtex: BibTeX
@misc{Qu,
   author = {Qu, X. and Wang, J. and Zhang, Z. and Koop, N. and Rahmanzadeh, R. and Huttmann, G.},
   title = {Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes},
   volume = {13},
   number = {3},
   pages = {031217},
   note = {Using Smart Source Parsing
May-Jun},
   abstract = {Due to their unique optical properties, optical probes, including metal nanoparticles (NPs) and fluorescent dyes, are increasingly used as labeling tools in biological imaging. Using multiphoton microscopy and fluorescence lifetime imaging (FLIM) at 750-nm excitation, we recorded intensity and FLIM images from gold NPs (30 nm) and the fluorescent dye Alexa 488 (A488) conjugated with monoclonal ACT-1 antibodies as well as Hoechst 33258 (H258) after incubation with the lymphoma cell line (Karpas-299). From the FLIM images, we can easily discriminate the imaging difference between cells and optical probes according to their distinct fluorescence lifetimes (cellular autofluorescence: 1 to 2 ns; gold NPs: <0.02 ns; A488: 3.5 ns; H258: 2.5 ns). The NP-ACT-1 and A488-ACT-1 conjugates were bound homogeneously on the surface of cells, whereas H258 stained the cell nucleus. We demonstrate that the emission intensity of gold NPs is about ten times stronger than that of the autofluorescence of Karpas-299 cells at the same excitation power. Compared with fluorescent dyes, stronger emission is also observed from gold NPs. Together with their high photostability, these observations suggest that gold NPs are a viable alternative to fluorescent dyes for cellular imaging and cancer diagnosis.},
   ISBN = {1083-3668 (Print)
1083-3668 (Linking)},
   year = {2008}
}
R. Rahmanzadeh, Gereon Hüttmann, Johannes Gerdes, and Thomas Scholzen,
Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis, Cell Prolif , vol. 40, no. 3, pp. 422-30, 2007.
DOI:10.1111/j.1365-2184.2007.00433.x
Bibtex: BibTeX
@article{Rahmanzadeh,
   author = {Rahmanzadeh, R. and Huttmann, G. and Gerdes, J. and Scholzen, T.},
   title = {Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis},
   journal = {Cell Prolif},
   volume = {40},
   number = {3},
   pages = {422-30},
   note = {Rahmanzadeh, R
Huttmann, G
Gerdes, J
Scholzen, T
England
Cell Prolif. 2007 Jun;40(3):422-30.},
   abstract = {OBJECTIVES: Expression of the nuclear Ki-67 protein (pKi-67) is strongly associated with cell proliferation. For this reason, antibodies against this protein are widely used as prognostic tools for the assessment of cell proliferation in biopsies from cancer patients. Despite this broad application in histopathology, functional evidence for the physiological role of pKi-67 is still missing. Recently, we proposed a function of pKi-67 in the early steps of ribosomal RNA (rRNA) synthesis. Here, we have examined the involvement of pKi-67 in this process by photochemical inhibition using chromophore-assisted light inactivation (CALI). MATERIALS AND METHODS: Anti-pKi-67 antibodies were labelled with the fluorochrome fluorescein 5(6)-isothiocyanate and were irradiated after binding to their target protein. RESULTS: Performing CALI in vitro on cell lysates led to specific cross-linking of pKi-67. Moreover, the upstream binding factor (UBF) necessary for rRNA transcription was also partly subjected to cross-link formation, indicating a close spatial proximity of UBF and pKi-67. CALI in living cells, using micro-injected antibody, caused a striking relocalization of UBF from foci within the nucleoli to spots located at the nucleolar rim or within the nucleoplasm. pKi-67-CALI resulted in dramatic inhibition of RNA polymerase I-dependent nucleolar rRNA synthesis, whereas RNA polymerase II-dependent nucleoplasmic RNA synthesis remained almost unaltered. CONCLUSIONS: Our data presented here argue for a crucial role of pKi-67 in RNA polymerase I-dependent nucleolar rRNA synthesis.},
   keywords = {Antibodies, Antinuclear
Antibodies, Monoclonal
Cell Division/physiology
Cell Nucleolus/physiology
Fluorescein-5-isothiocyanate
Fluorescent Dyes
HeLa Cells
Humans
Ki-67 Antigen/*genetics/*metabolism
Photochemistry
RNA Polymerase I/metabolism
RNA, Ribosomal/*biosynthesis},
   year = {2007}
}
Cuiping Yao, Ramtin Rahmanzadeh, Elmar Endl, Zhenxi Zhang, Johannes Gerdes, and Gereon Hüttmann,
Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles, J Biomed Opt , vol. 10, no. 6, pp. 064012, 2005.
DOI:http://dx.doi.org/10.1117/1.2137321
Bibtex: BibTeX
@article{Yao,
   author = {Yao, C. and Rahmanzadeh, R. and Endl, E. and Zhang, Z. and Gerdes, J. and Huttmann, G.},
   title = {Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles},
   journal = {J Biomed Opt},
   volume = {10},
   number = {6},
   pages = {064012},
   note = {Yao, Cuiping
Rahmanzadeh, Ramtin
Endl, Elmar
Zhang, Zhenxi
Gerdes, Johannes
Huttmann, Gereon
Research Support, Non-U.S. Gov't
United States
J Biomed Opt. 2005 Nov-Dec;10(6):064012.},
   abstract = {Irradiation of nanoabsorbers with pico- and nanosecond laser pulses could result in thermal effects with a spatial confinement of less than 50 nm. Therefore absorbing nanoparticles could be used to create controlled cellular effects. We describe a combination of laser irradiation with nanoparticles, which changes the plasma membrane permeability. We demonstrate that the system enables molecules to penetrate impermeable cell membranes. Laser light at 532 nm is used to irradiate conjugates of colloidal gold, which are delivered by antibodies to the plasma membrane of the Hodgkin's disease cell line L428 and/or the human large-cell anaplastic lymphoma cell line Karpas 299. After irradiation, membrane permeability is evaluated by fluorescence microscopy and flow cytometry using propidium iodide (PI) and fluorescein isothiocyanate (FITC) dextran. The fraction of transiently permeabilized and then resealed cells is affected by the laser parameter, the gold concentration, and the membrane protein of the different cell lines to which the nanoparticles are bound. Furthermore, a dependence on particle size is found for these interactions in the different cell lines. The results suggest that after optimization, this method could be used for gene transfection and gene therapy.},
   keywords = {Biopolymers/pharmacokinetics
Cell Line, Tumor
Cell Membrane Permeability/ physiology/ radiation effects
Drug Delivery Systems/ methods
Fluoresceins/ pharmacokinetics
Humans
Lasers
Lymphoma/ metabolism
Nanostructures},
   year = {2005}
}
Ramtin Rahmanzadeh, K. Muller, Eberhard Fischer, Dorothea Bartels, and T. Borsch,
The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales), vol. 7, no. 1, pp. 67-78, Jan. 2005.
DOI:10.1055/s-2004-830444
ISBN:1435-8603 (Print) 1435-8603 (Linking)
Bibtex: BibTeX
@misc{Rahmanzadeh,
   author = {Rahmanzadeh, R. and Muller, K. and Fischer, E. and Bartels, D. and Borsch, T.},
   title = {The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales)},
   volume = {7},
   number = {1},
   pages = {67-78},
   month = {Jan},
   note = {Rahmanzadeh, R
Muller, K
Fischer, E
Bartels, D
Borsch, T
Research Support, Non-U.S. Gov't
Germany
Plant Biol (Stuttg). 2005 Jan;7(1):67-78.},
   abstract = {The Lamiales are one of the largest orders of angiosperms, with about 22,000 species. The Scrophulariaceae, as one of their most important families, has recently been shown to be polyphyletic. As a consequence, this family was re-classified and several groups of former scrophulariaceous genera now belong to different families, such as the Calceolariaceae, Plantaginaceae, or Phrymaceae. In the present study, relationships of the genera Craterostigma, Lindernia and its allies, hitherto classified within the Scrophulariaceae, were analyzed. Sequences of the chloroplast trnK intron and the matK gene (approximately 2.5 kb) were generated for representatives of all major lineages of the Lamiales and the former Scrophulariaceae. Bayesian and parsimony analyses revealed two isolated lineages, one of which consists of Lindernia and its allies, the other of Gratiola and allies. Gratiola was previously assumed to be related to Lindernia and was therefore included here. It is proposed to treat the two clades as separate families, Linderniaceae and Gratiolaceae. For the Linderniaceae, several morphological synapomorphies exist in addition to molecular data, such as conspicuous club-shaped stamen appendages.},
   keywords = {Bayes Theorem
Genes, Plant
Introns
Phenotype
Phylogeny
Scrophulariaceae/anatomy & histology/ classification/genetics
Species Specificity},
   ISBN = {1435-8603 (Print)
1435-8603 (Linking)},
   year = {2005}
}