Dirk
Theisen-Kunde,
Jessica
Kren,
Alessa
Hutfilz,
Matteo Mario
Bonsanto, and
Ralf
Brinkmann,
Clinical evaluation of thulium laser / ultrasonic aspirator combination instrument during neurosurgical tumour resection, 2023.
Clinical evaluation of thulium laser / ultrasonic aspirator combination instrument during neurosurgical tumour resection, 2023.
Weblink: | https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34?SSO=1 |
Bibtex: | ![]() @inproceedings{RN5454, author = {Theisen-Kunde, D;Kren, J;Hutfilz, A;Bonsanto, M and Brinkmann, R}, title = {Clinical evaluation of thulium laser/ultrasonic aspirator combination instrument during neurosurgical tumour resection}, booktitle = {ECBO}, publisher = {SPIE}, url = {https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34}, type = {Conference Proceedings} } |
Nicolas
Detrez,
Sazgar
Burhan,
Paul
Strenge,
Jessica
Kren,
Christian
Hagel,
Matteo Mario
Bonsanto,
Dirk
Theisen-Kunde,
Robert
Huber, and
Ralf
Brinkmann,
Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis, in Emerging Technologies for Cell and Tissue Characterization II , Seemantini K. Nadkarni and Giuliano Scarcelli, Eds. SPIE, 2023. pp. 126290M.
Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis, in Emerging Technologies for Cell and Tissue Characterization II , Seemantini K. Nadkarni and Giuliano Scarcelli, Eds. SPIE, 2023. pp. 126290M.
DOI: | 10.1117/12.2670944 |
File: | 12.2670944 |
Bibtex: | ![]() @inproceedings{10.1117/12.2670944, author = {Nicolas Detrez and Sazgar Burhan and Paul Strenge and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann}, title = {{Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis}}, volume = {12629}, booktitle = {Emerging Technologies for Cell and Tissue Characterization II}, editor = {Seemantini K. Nadkarni and Giuliano Scarcelli}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {126290M}, keywords = {Optical Coherence Elastography, Air-Jet, Phase-sensitive OCT, Histology Structure Analysis, Color-Deconvolution, Structural Tensors, Brain tumor, Tissue Characterization}, year = {2023}, doi = {10.1117/12.2670944}, URL = {https://doi.org/10.1117/12.2670944} } |
Nicolas
Detrez,
Sazgar
Burhan,
Katharina
Rewerts,
Jessica
Kren,
Christian
Hagel,
Matteo Mario
Bonsanto,
Dirk
Theisen-Kunde,
Robert
Huber, and
Ralf
Brinkmann,
Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data, in Optical Elastography and Tissue Biomechanics X , Kirill V. Larin and Giuliano Scarcelli and Frédérique Vanholsbeeck, Eds. SPIE, 2023. pp. 1238105.
Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data, in Optical Elastography and Tissue Biomechanics X , Kirill V. Larin and Giuliano Scarcelli and Frédérique Vanholsbeeck, Eds. SPIE, 2023. pp. 1238105.
DOI: | 10.1117/12.2649835 |
File: | 12.2649835 |
Bibtex: | ![]() @inproceedings{10.1117/12.2649835, author = {Nicolas Detrez and Sazgar Burhan and Katharina Rewerts and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann}, title = {{Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data}}, volume = {12381}, booktitle = {Optical Elastography and Tissue Biomechanics X}, editor = {Kirill V. Larin and Giuliano Scarcelli and Fr{\'e}d{\'e}rique Vanholsbeeck}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1238105}, keywords = {Optical Coherence Elastography, Air-Jet, Air-Puff, biomechanics, viscoelasticity, rheology, brain tissue, brain tumor}, year = {2023}, doi = {10.1117/12.2649835}, URL = {https://doi.org/10.1117/12.2649835} } |
Paula
Enzian,
Birgit
Lange,
Zuzana
Penxova,
Anke
Leichtle,
Yoko
Miura,
Karl-Ludwig
Bruchhage, and
Ralf
Brinkmann,
Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126271T.
Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126271T.
DOI: | 10.1117/12.2670902 |
File: | 12.2670902 |
Bibtex: | ![]() @inproceedings{10.1117/12.2670902, author = {Paula Enzian and Birgit Lange and Zuzana Penxov{\'a} and Anke Leichtle and Yoko Miura and Karl-Ludwig Bruchhage and Ralf Brinkmann}, title = {{Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples}}, volume = {12627}, booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III}, editor = {Zhiwei Huang and Lothar D. Lilge}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {126271T}, keywords = {FLIM, autofluorescence, otitis media, cholesteatoma, middle ear, inflammation}, year = {2023}, doi = {10.1117/12.2670902}, URL = {https://doi.org/10.1117/12.2670902} } |
Wolfgang
Draxinger,
Dirk
Theisen-Kunde,
Lion
Schuetz,
Nicolas
Detrez,
Paul
Strenge,
Maximilian
Rixius,
Veit
Danicke,
Wolfgang
Wieser,
Jessica
Kren,
Patrick
Kuppler,
Sonja
Spar-Hess,
Matteo Mario Bonsanto
M.D.,
Ralf
Brinkmann, and
Robert
Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270W.
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270W.
DOI: | 10.1117/12.2670953 |
File: | 12.2670953 |
Bibtex: | ![]() @inproceedings{10.1117/12.2670953, author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber}, title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}}, volume = {12627}, booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III}, editor = {Zhiwei Huang and Lothar D. Lilge}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {126270W}, keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics}, year = {2023}, doi = {10.1117/12.2670953}, URL = {https://doi.org/10.1117/12.2670953} } |
Christin
Grill,
Julie-Jacqueline
Kuhl,
Maximiliane Amelie
Schlenz, and
Ralf
Brinkmann,
Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 2023. pp. 126320J.
Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 2023. pp. 126320J.
DOI: | 10.1117/12.2670874 |
File: | 12.2670874 |
Bibtex: | ![]() @inproceedings{10.1117/12.2670874, author = {Christin Grill and Julie-Jacqueline Kuhl and Maximiliane Amelie Schlenz and Ralf Brinkmann}, title = {{Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography}}, volume = {12632}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V}, editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {126320J}, keywords = {Optical Coherence Tomography, OCT, Monolithic dental crowns, CAD/CAM materials, Microcracks, Non-destructive method, Fatigue damage, Dental materials}, year = {2023}, doi = {10.1117/12.2670874}, URL = {https://doi.org/10.1117/12.2670874} } |
Sazgar
Burhan,
Nicolas
Detrez,
Katharina
Rewerts,
Madita
Göb,
Steffen
Buschschlüter,
Christian
Hagel,
Matteo M.
Bonsanto,
Dirk
Theisen-Kunde,
Robert
Huber, and
Ralf
Brinkmann,
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
DOI: | 10.1117/12.2652847 |
Bibtex: | ![]() @inproceedings{10.1117/12.2652847, author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Steffen Buschschl{\"u}ter and Christian Hagel and Matteo Mario Bonsanto M.D. and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann}, title = {{Phase analysis strategies for MHz OCE in the large displacement regime}}, volume = {12367}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {123670Q}, abstract = {In neurosurgical tumor operations on the central nervous system, intraoperative haptic information often assists for discrimination between healthy and diseased tissue. Thus, it can provide the neurosurgeon with additional intraoperative source of information during resection, next to the visual information by the light microscope, fluorescent dyes and neuronavigation. One approach to obtain elastic and viscoelastic tissue characteristics non-subjectively is phase-sensitive optical coherence elastography (OCE), which is based on the principle of optical coherence tomography (OCT). While phase-sensitive OCE offers significantly higher displacement sensitivity inside a sample than commonly used intensity-based correlation methods, it requires a reliable algorithm to recover the phase signal, which is mathematically restricted in the -π to π range. This problem of phase wrapping is especially critical for inter-frame phase analysis since the time intervals between two referenced voxels is long. Here, we demonstrate a one-dimensional unwrapping algorithm capable of removing up to 4π-ambiguities between two frames in the complex phase data obtained from a 3.2 MHz-OCT system. The high sampling rate allows us to resolve large sample displacements induced by a 200 ms air pulse and acquires pixel-precise detail information. The deformation behavior of the tissue can be monitored over the entire acquisition time, offering various subsequent mechanical analysis procedures. The reliability of the algorithm and imaging concept was initially evaluated using different brain tumor mimicking phantoms. Additionally, results from human ex vivo brain tumor samples are presented and correlated with histological findings supporting the robustness of the algorithm.}, keywords = {Optical Coherence Tomography, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, Phase-sensitive OCT, Phase Unwrapping, Brain tumor, Biomechanics}, year = {2023}, doi = {10.1117/12.2652847}, URL = {https://doi.org/10.1117/12.2652847} } |
Dirk
Theisen-Kunde,
Claus
Burchard,
Veit
Danicke,
Jan-Eric
Fleger,
Christopher
Kren,
Sebastian
Wittmeier,
Johann
Roider, and
Ralf
Brinkmann,
Real-time temperature-control for cw retinal laser therapy in a clinical study, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 1262723.
Real-time temperature-control for cw retinal laser therapy in a clinical study, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 1262723.
DOI: | 10.1117/12.2670839 |
File: | 12.2670839 |
Bibtex: | ![]() @inproceedings{10.1117/12.2670839, author = {Dirk Theisen-Kunde and Claus von der Burchard and Veit Danicke and Jan-Eric Fleger and Christopher Kren and Sebastian Wittmeier and Johann Roider and Ralf Brinkmann}, title = {{Real-time temperature-control for cw retinal laser therapy in a clinical study}}, volume = {12627}, booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III}, editor = {Zhiwei Huang and Lothar D. Lilge}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1262723}, keywords = {retinal laser, real time temperature control, clinical study, CSCR}, year = {2023}, doi = {10.1117/12.2670839}, URL = {https://doi.org/10.1117/12.2670839} } |
Paul
Strenge,
Birgit
Lange,
Wolfgang
Draxinger,
Christin
Grill,
Veit
Danicke,
Dirk
Theisen-Kunde,
Christian
Hagel,
Sonja
Spahr-Hess,
Matteo M.
Bonsanto,
Heinz
Handels,
Ralf
Brinkmann, and
Robert
Huber,
Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology, Frontiers in Oncology , Aug. 2022.
Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology, Frontiers in Oncology , Aug. 2022.
DOI: | 10.3389/fonc.2022.896060 |
Bibtex: | ![]() @article{Strenge-2022, author = {Strenge, P.;Lange, B.;Grill,C.;Danicke,V.;Theisen-Kunde, D.;Hagel, C.;Spahr-Hess, S.;;Bonsanto, Matteo M.;Handels, H.; and Huber, R.;Brinkmann, R.}, title = {Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology}, journal = {Frontiers in Oncology}, Keywords = {AG-Huber_FDML, AG-Huber_OCT, brain, tumor, glioblastoma multiforme, OCT, neural network, attenuation (absorption) coefficient, optical coherence tomography}, DOI = {https://doi.org/10.3389/fonc.2022.896060}, url = {https://www.frontiersin.org/articles/10.3389/fonc.2022.896060/full}, year = {2022}, type = {Journal Article} } |
Paul
Strenge,
Birgit
Lange,
Christin
Grill,
Wolfgang
Draxinger,
Veit
Danicke,
Dirk
Theisen-Kunde,
Christian
Hagel,
Sonja
Spahr-Hess,
Matteo M.
Bonsanto,
Robert
Huber,
Heinz
Handels, and
Ralf
Brinkmann,
Registration of histological brain images onto optical coherence tomography images based on shape information, Physics in Medicine & Biology , Jun. 2022.
Registration of histological brain images onto optical coherence tomography images based on shape information, Physics in Medicine & Biology , Jun. 2022.
DOI: | 10.1088/1361-6560/ac6d9d |
Bibtex: | ![]() @article{Strenge2022, author = {Strenge, P;Lange, B;Grill, C;Draxinger, W;Danicke, V;Theisen-Kunde, D;Hagel, C;Spahr-Hess, S;Bonsanto, Matteo M.;Huber, R;Handels, H and Brinkmann, R}, title = {Registration of histological brain images onto optical coherence tomography images based on shape information}, keywords = {brain, glioblastoma multiforme, shape, OCT, optical coherence tomography, AG-Huber_OCT,}, journal = {Physics in Medicine & Biology}, ISSN = {0031-9155}, url = {http://iopscience.iop.org/article/10.1088/1361-6560/ac6d9d}, year = {2022}, type = {Journal Article} } |
Konstantin
Yashin,
Matteo Mario
Bonsanto,
Ksenia
Achkasova,
Anna
Zolotova,
Al-Madhaji
Wael,
Elena
Kiseleva,
Alexander
Moiseev,
Igor
Medyanik,
Leonid
Kravets,
Robert
Huber,
Ralf
Brinkmann, and
Natalia
Gladkova,
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives, Diagnostics , vol. 12, no. 2, pp. 335, Jan. 2022.
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives, Diagnostics , vol. 12, no. 2, pp. 335, Jan. 2022.
DOI: | 10.3390/diagnostics12020335 |
File: | 335 |
Bibtex: | ![]() @article{Yashin-2022, author = {Yashin, K;Bonsanto, M M;Achkasova, K;Zolotova, A;Wael, Al-M;Kiseleva, E;Moiseev, A;Medyanik, I;Kravets, L;Huber, R;Brinkmann, R and Gladkova, N}, title = {OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives}, journal = {Diagnostics}, volume = {12}, number = {2}, pages = {335}, ISSN = {2075-4418}, keywords = {AG-Huber; optical coherence tomography; brain imaging; neurosurgical guidance; brain tumor; minimally invasive theranostics; intraoperative imaging}, url = {https://www.mdpi.com/2075-4418/12/2/335}, year = {2022}, type = {Journal Article} } |
Manuel A.
Schaller,
Viktoria
Kleymann,
Mario
Mordmüller,
Schmidt
Christian,
Mitsuru
Wilson,
Ralf
Brinkmann,
Matthias A.
Müller, and
Karl
Worthmann,
Model predictive control for retinal laser treatment at 1 kHz, at - Automatisierungstechnik , vol. 70(11), pp. 992-1002, 2022.
Model predictive control for retinal laser treatment at 1 kHz, at - Automatisierungstechnik , vol. 70(11), pp. 992-1002, 2022.
File: | auto-2022-0030 |
Bibtex: | ![]() @article{Schaller2022, author = {Schaller, M.;Kleyman, K.;Mordmüller, M.;Schmidt, C.;Wilson, M.;Brinkmann, R.;Müller, M.A. and Worthmann, K.}, title = {Model predictive control for retinal laser treatment at 1 kHz}, journal = {at - Automatisierungstechnik}, volume = {70(11)}, keywords = {model predictive control; real-time control;retinal photocoagulation}, pages = {992-1002}, url = {https://doi.org/10.1515/auto-2022-0030}, year = {2022}, type = {Journal Article} } |
Manuel A.
Schaller,
Mitsuru
Wilson,
Viktoria
Kleymann,
Mario
Mordmüller,
Ralf
Brinkmann,
Matthias A.
Müller, and
Karl
Worthmann,
Parameter estimation and model reduction for model predictive control in retinal laser treatment, Control Engineering Practice , vol. 128, pp. 105320, 2022.
Parameter estimation and model reduction for model predictive control in retinal laser treatment, Control Engineering Practice , vol. 128, pp. 105320, 2022.
DOI: | https://doi.org/10.1016/j.conengprac.2022.105320 |
Bibtex: | ![]() @article{Schaller2022, author = {Schaller, M;Wilson, M;Kleyman, V;Mordmüller, M;Brinkmann, R;Müller, M. A. and Worthmann, K}, title = {Parameter estimation and model reduction for model predictive control in retinal laser treatment}, journal = {Control Engineering Practice}, volume = {128}, pages = {105320}, ISSN = {0967-0661}, DOI = {https://doi.org/10.1016/j.conengprac.2022.105320}, year = {2022}, type = {Journal Article} } |
Yoko
Miura,
Keiji
Inagaki,
Alessa
Hutfilz,
Eric
Seifert,
Benedikt
Schmarbeck,
Akira
Murakami,
Kishiko
Ohkoshi, and
Ralf
Brinkmann,
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
DOI: | https://doi.org/10.3390/life12091313 |
File: | 1313 |
Bibtex: | ![]() @article{Miura2022, author = {Miura, Y;Inagaki, K;Hutfilz, A;Seifert, E;Schmarbeck, B;Murakami, A;Ohkoshi, K and Brinkmann, R}, title = {Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application}, journal = {Life}, volume = {12(9)}, pages = {1313}, ISSN = {2075-1729}, url = {https://www.mdpi.com/2075-1729/12/9/1313}, year = {2022}, type = {Journal Article} } |
Birgit
Lange,
Tomasz
Ozimek,
Judith R.
Wießmeyer,
Mario W.
Kramer,
Axel S.
Merseburger, and
Ralf
Brinkmann,
Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy, Biomedical Physics & Engineering Express , vol. 8, no. 5, pp. 055023, 2022.
Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy, Biomedical Physics & Engineering Express , vol. 8, no. 5, pp. 055023, 2022.
DOI: | 10.1088/2057-1976/ac82c7 |
Bibtex: | ![]() @article{Lange2022, author = {Lange, B;Ozimek, T;Wießmeyer, J R;Kramer, M W.;Merseburger, A S. and Brinkmann, R}, title = {Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy}, journal = {Biomedical Physics & Engineering Express}, volume = {8}, number = {5}, abstract = {Objectives. In laser lithotripsy, a green aiming beam overlying the infrared (IR) treatment radiation gives rise to reflection and fluorescence signals that can be measured via the treatment fiber. While stone autofluorescence is used for target detection, the condition of the fiber can be assessed based on its Fresnel reflection. For good applicability, fluorescence detection of stones should work even when the stone and fiber are not in direct contact. Fiber breakage detection, on the other hand, can be falsified if surfaces located in front of the fiber reflect light from the aiming laser back into it. For both applications, therefore, a fundamental investigation of the dependence of the signal amplitude on the distance between fiber and surface is important. Methods. Calculations of the signal drop of fluorescence or diffuse and specular reflection with increasing fiber distance were performed using ray tracing based on a simple geometric model for different fiber core diameters. Reflection signals from a mirror, diffuse reflector, human calculi, and porcine renal tissue placed in water were measured at varying distances (0–5 mm). For human calculi, fluorescence signals were recorded simultaneously. Results. The calculations showed a linear signal decrease down to ∼60% of the maximum signal (fiber in contact). The distance z at which the signal drops to for example 50% depends linearly on the diameter of the fiber core. For fibers used in lithotripsy and positioned in water, z50% ranges from 0.55 mm (200 μm core diameter) to 2.73 mm, (1 mm core diameter). The calculations were in good agreement with the experimental results. Conclusions. The autofluorescence signals of stones can be measured in non-contact mode. Evaluating the Fresnel signal of the end face of the fiber to detect breakage is possible unless the fiber is situated less than some millimeters to reflecting surfaces.}, keywords = {urolithiasis, laser lithotripsy, fluorescence, reflectance}, pages = {055023}, ISSN = {2057-1976}, DOI = {10.1088/2057-1976/ac82c7}, year = {2022}, type = {Journal Article} } |
Paul
Strenge,
Birgit
Lange,
Christin
Grill,
Wolfgang
Draxinger,
Veit
Danicke,
Dirk
Theisen-Kunde,
Heinz
Handels,
Matteo M.
Bonsanto,
Christian
Hagel,
Robert
Huber, and
Ralf
Brinkmann,
Comparison of two optical coherence tomography systems to identify human brain tumor, Optical Society of America, Dec.2021. pp. EW1C.7.
Comparison of two optical coherence tomography systems to identify human brain tumor, Optical Society of America, Dec.2021. pp. EW1C.7.
DOI: | 10.1117/12.2616044 |
Bibtex: | ![]() @inproceedings{Strenge:21, author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann}, journal = {European Conferences on Biomedical Optics 2021 (ECBO)}, keywords = {AG-Huber_OCT; Absorption coefficient; Attenuation coefficient; Fourier domain mode locking; Multiple scattering; Optical coherence tomography; Spectral domain optical coherence tomography}, pages = {EW1C.7}, publisher = {Optical Society of America}, title = {Comparison of two optical coherence tomography systems to identify human brain tumor}, year = {2021}, url = {https://doi.org/10.1117/12.2616044}, abstract = {The identification of ex vivo brain tumor tissue was investigated with two different optical coherence tomography systems exploiting two optical parameters. The optical parameters were calculated from semantically labelled OCT B-scans.}, } |
Nicolas
Detrez,
Katharina
Rewerts,
Moritz
Matthiae,
Steffen
Buschschlüter,
Matteo M.
Bonsanto,
Dirk
Theisen-Kunde, and
Ralf
Brinkmann,
Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography, in ECBO , Optical Society of America, Dec.2021. pp. EW4A.10.
Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography, in ECBO , Optical Society of America, Dec.2021. pp. EW4A.10.
Weblink: | https://opg.optica.org/abstract.cfm?uri=ECBO-2021-EW4A.10 |
Bibtex: | ![]() @inproceedings{Detrez:21, author = {N. Detrez, K. Rewerts, M. Matthiae, S. Buschschlueter, M.M. Bonsanto, D. Theisen-Kunde and R. Brinkmann}, journal = {European Conferences on Biomedical Optics 2021 (ECBO)}, keywords = {AG-Huber_OCT}, pages = {EW4A.10}, publisher = {Optical Society of America}, title = {Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography}, year = {2021}, url = {https://doi.org/10.1117/12.2615022}, abstract = {A precision air puff excitation system for MHz Optical Coherence Elastography in neurosurgery was developed. It enables non-contact soft-tissue excitation down to {\textmu}N, with direct, noncontact force determination via gas flow measurement.}, } |
Katharina
Rewerts,
Moritz
Matthiae,
Nicolas
Detrez,
Steffen
Buschschlüter,
Matteo M.
Bonsanto,
Robert
Huber, and
Ralf
Brinkmann,
Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation, in ECBO , Optical Society of America, Dec.2021. pp. ETh3A.3.
Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation, in ECBO , Optical Society of America, Dec.2021. pp. ETh3A.3.
Weblink: | https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETh3A.3 |
Bibtex: | ![]() @inproceedings{Rewerts2021ECBO, author = {K. Rewerts, M. Matthiae, N. Detrez, S. Buschschlueter, M.M. Bonsanto, R. Huber and R. Brinkmann}, journal = {European Conferences on Biomedical Optics 2021 (ECBO)}, keywords = {AG-Huber_OCT}, pages = {ETh3A.3}, publisher = {Optical Society of America}, title = {Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation}, year = {2021}, url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-ETh3A.3}, abstract = {Tumor discrimination from healthy tissue is often performed by haptically probing tissue elasticity. We demonstrate non-contact elastography using air-puff excitation and tissue indentation measurement by phase-sensitive OCT with a 3.2 MHz FDML-laser.}, } |
Hubertus
Hakert,
Matthias
Eibl,
Marie
Tillich,
Ralph
Pries,
Gereon
Hüttmann,
Ralf
Brinkmann,
Barbara
Wollenberg,
Ludwig
Bruchhage,
Sebastian
Karpf, and
Robert
Huber,
Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800 cm-1, Optics Letters , vol. 46(14), no. 14, pp. 3456-3459, Jul. 2021.
Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800 cm-1, Optics Letters , vol. 46(14), no. 14, pp. 3456-3459, Jul. 2021.
DOI: | 10.1364/OL.424726 |
Bibtex: | ![]() @article{Hakert2021, author = {H. Hakert, M. Eibl, M. Tillich, R.Pries, G. Hüttmann, R. Brinkmann, B. Wollenberg, K-L. Bruchhage, S. Karpf and R. Huber}, title = {Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800 cm-1}, journal = {Optics Letters}, volume = {46(14)}, number = {14}, pages = {3456-3459}, keywords = {AG-Huber_NL, Clinical applications, Master oscillator power amplifiers, Optical coherence tomography, Raman scattering, Stimulated Raman scattering, Stimulated scattering}, DOI = {https://doi.org/10.1364/OL.424726}, year = {2021}, type = {Journal Article} } |
Paul
Strenge,
Birgit
Lange,
Wolfgang
Draxinger,
Veit
Danicke,
Dirk
Theisen-Kunde,
Heinz
Handels,
Matteo M.
Bonsanto,
Christian
Hagel,
Robert
Huber, and
Ralf
Brinkmann,
Characterization of brain tumor tissue with 1310 nm optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, Mar.2021. pp. 74 -- 80.
Characterization of brain tumor tissue with 1310 nm optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, Mar.2021. pp. 74 -- 80.
DOI: | 10.1117/12.2578409 |
Bibtex: | ![]() @inproceedings{Strenge2021A, author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann}, title = {{Characterization of brain tumor tissue with 1310 nm optical coherence tomography}}, volume = {11630}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {74 -- 80}, abstract = {The separation of tumorous brain tissue and healthy brain tissue is still a big challenge in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. On the basis of a recently created labelled OCT dataset of ex vivo glioblastoma multiforme tumor samples the detection of brain tumor tissue and the identification of zones with varying degrees of infiltration of tumor cells was investigated. The identification was based on the optical properties, which were extracted by an exponential fit function. The results showed that a separation of tumorous tissue and healthy white matter based on these optical properties is possible. A support vector machine was trained on the optical properties to separate tumor from healthy white matter tissue, which achieved a sensitivity of 91% and a specificity of 76% on an independent training dataset.}, keywords = {AG-Huber_OCT, optical coherence tomography, OCT, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery}, year = {2021}, URL = {hhttps://doi.org/10.1117/12.2578409} } |
Paul
Strenge,
Birgit
Lange,
Christin
Grill,
Wolfgang
Draxinger,
Veit
Danicke,
Dirk
Theisen-Kunde,
Heinz
Handels,
Christian
Hagel,
Matteo M.
Bonsanto,
Robert
Huber, and
Ralf
Brinkmann,
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , SPIE, Mar.2021. pp. 66 -- 73.
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , SPIE, Mar.2021. pp. 66 -- 73.
DOI: | 10.1117/12.2578391 |
Bibtex: | ![]() @inproceedings{Strenge2021, author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, C. Hagel, M. Bonsanto, R. Huber and R. Brinkmann}, title = {{Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples}}, volume = {11630}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {66 -- 73}, abstract = {Optical coherence tomography (OCT) has the potential to become an additional imaging modality for surgical guidance in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. Interpretation of the images, however, is still a big challenge. A method to create a labeled OCT dataset based on ex vivo brain samples is introduced. The tissue samples were embedded in an agarose mold giving them a distinctive shape before images were acquired with two OCT systems (spectral domain (SD) and swept source (SS) OCT) and histological sections were created and segmented by a neuropathologist. Based on the given shape, the corresponding OCT images for each histological image can be determined. The transfer of the labels from the histological images onto the OCT images was done with a non-affine image registration approach based on the tissue shape. It was demonstrated that finding OCT images of a tissue sample corresponding to segmented histological images without any color or laser marking is possible. It was also shown that the set labels can be transferred onto OCT images. The accuracy of method is 26 ± 11 pixel, which translates to 192 ± 75 μm for the SS-OCT and 94 ± 43 μm for the SD-OCT. The dataset consists of several hundred labeled OCT images, which can be used to train a classification algorithm.}, keywords = {AG-Huber_OCT, optical coherence tomography, OCT, image registration, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery}, year = {2021}, URL = {https://doi.org/10.1117/12.2578391} } |
Eric
Seifert,
Jan
Tode,
Amelie
Pielen,
Dirk
Theisen-Kunde,
Carsten
Framme,
Johann
Roider,
Yoko
Miura,
Reginald
Birngruber, and
Ralf
Brinkmann,
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
File: | S2213597921000756 |
Bibtex: | ![]() @article{Seifert2021, author = {Seifert, E;Tode, J;Pielen, A;Theisen-Kunde, D;Framme, C;Roider, J;Miura, Y;Birngruber, R and Brinkmann, R}, title = {Algorithms for optoacoustically controlled selective retina therapy (SRT)}, journal = {Photoacoustics}, Keywords = {SRT; Lasers in medicine; Ophthalmology; RPE; Selectivity; Algorithm; Retina therapy; Optoacoustics; Feedback}, volume = {25}, pages = {100316}, ISSN = {2213-5979}, url = {https://www.sciencedirect.com/science/article/pii/S2213597921000756}, year = {2021}, type = {Journal Article} } |
Christian
Burri,
Alessa
Hutfilz,
Lorenz
Grimm,
Simon
Salzmann,
Patrik
Arnold,
Boris
Považay,
Christoph
Meier,
Andreas
Ebneter,
Dirk
Theisen-Kunde, and
Ralf
Brinkmann,
Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery, Applied Sciences , vol. 11(12), pp. 5535, 2021.
Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery, Applied Sciences , vol. 11(12), pp. 5535, 2021.
DOI: | https://doi.org/10.3390/app11125535 |
File: | 5535 |
Bibtex: | ![]() @article{Burri2021, author = {Burri, C;Hutfilz, A;Grimm, L;Salzmann, S;Arnold, P;Považay, B;Meier, C;Ebneter, A;Theisen-Kunde, D and Brinkmann, R}, title = {Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery}, journal = {Applied Sciences}, volume = {11(12)}, pages = {5535}, ISSN = {2076-3417}, DOI = { https://doi.org/10.3390/app11125535}, url = {https://www.mdpi.com/2076-3417/11/12/5535}, year = {2021}, keywords = {selective retina therapy; viability assay; photocoagulation; microbubble formation; thermomechanical damage; fringe washout; coherence-loss}, type = {Journal Article} } |
Akika
Kyo,
Manabu
Yamamoto,
Kumiko
Hirayama,
Takeya
Kohno,
Dirk
Theisen-Kunde,
Ralf
Brinkmann,
Yoko
Miura, and
Shigeru
Honda,
Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy, Sci Rep , vol. 11(1), pp. 8973, 2021.
Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy, Sci Rep , vol. 11(1), pp. 8973, 2021.
DOI: | 10.1038/s41598-021-88372-8 |
Bibtex: | ![]() @article{Kyo-2021, author = {Kyo, A.;Yamamoto, M.;Hirayama, K.;Kohno, T.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.}, title = {Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy}, journal = {Sci Rep}, volume = {11(1)}, pages = {8973}, ISSN = {2045-2322}, DOI = {10.1038/s41598-021-88372-8}, year = {2021}, type = {Journal Article} } |
Svenja
Sonntag,
Eric
Seifert,
Maximilian
Hamann,
Britta
Lewke,
Dirk
Theisen-Kunde,
Salvatore
Grisanti,
Ralf
Brinkmann, and
Yoko
Miura,
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
DOI: | https://www.mdpi.com/2075-1729/11/6/555 |
File: | 555 |
Bibtex: | ![]() @article{Miura2021-2, author = {Sonntag, S R;Seifert, E;Hamann, M;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y}, title = {Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States}, journal = {Life}, volume = {11(6)}, keywords = {retinal laser treatment; metabolic change; fluorescence lifetime imaging ophthalmoscopy}, pages = {555}, ISSN = {2075-1729}, url = {https://www.mdpi.com/2075-1729/11/6/555}, year = {2021}, type = {Journal Article} } |