2018
Matthias
Eibl,
Daniel
Weng,
Hubertus
Hakert,
Jan Philip
Kolb,
Tom
Pfeiffer,
Jennifer
Hundt,
Robert
Huber, and
Sebastian
Karpf,
Wavelength agile multi-photon microscopy with a fiber amplified diode laser, Biomedical Optics Express , vol. 9, no. 12, pp. 6273-6282, Nov. 2018. The Optical Society.
Wavelength agile multi-photon microscopy with a fiber amplified diode laser, Biomedical Optics Express , vol. 9, no. 12, pp. 6273-6282, Nov. 2018. The Optical Society.
DOI: | 10.1364/BOE.9.006273 |
Bibtex: | @article{Eibl2018, doi = {10.1364/boe.9.006273}, url = {https://doi.org/10.1364/boe.9.006273}, year = {2018}, month = nov, publisher = {The Optical Society}, volume = {9}, number = {12}, pages = {6273}, author = {Matthias Eibl and Daniel Weng and Hubertus Hakert and Jan Philip Kolb and Tom Pfeiffer and Jennifer E. Hundt and Robert Huber and Sebastian Karpf}, title = {Wavelength agile multi-photon microscopy with a fiber amplified diode laser}, journal = {Biomedical Optics Express} } |
Jan Philip
Kolb,
Tom
Pfeiffer,
Matthias
Eibl,
Hubertus
Hakert, and
Robert
Huber,
High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates, Biomed. Opt. Express , vol. 9, no. 1, pp. 120-130, 01 2018. Optica Publishing Group.
High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates, Biomed. Opt. Express , vol. 9, no. 1, pp. 120-130, 01 2018. Optica Publishing Group.
DOI: | 10.1364/BOE.9.000120 |
Bibtex: | @article{Kolb:18, author = {Jan Philip Kolb and Tom Pfeiffer and Matthias Eibl and Hubertus Hakert and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Medical optics instrumentation; Lasers, fiber; Medical and biological imaging; Ophthalmic optics and devices ; Optical coherence tomography; Adaptive optics; Image quality; In vivo imaging; Mode locking; Ophthalmic imaging; Three dimensional imaging}, number = {1}, pages = {120--130}, publisher = {Optica Publishing Group}, title = {High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates}, volume = {9}, month = {Jan}, year = {2018}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-9-1-120}, doi = {10.1364/BOE.9.000120}, abstract = {We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2\&\#x2219;\&\#x202F;417 kHz\&\#x202F; $=$ \&\#x202F;834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 \&\#x00B5;m axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 \&\#x00B5;m axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.}, } |
2017
Matthias
Eibl,
Sebastian
Karpf,
Hubertus
Hakert,
Torben
Blömker,
Jan Philip
Kolb,
Christian
Jirauschek, and
Robert
Huber,
Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification, Opt. Lett. , vol. 42, no. 21, pp. 4406-4409, Nov. 2017. Optica Publishing Group.
Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification, Opt. Lett. , vol. 42, no. 21, pp. 4406-4409, Nov. 2017. Optica Publishing Group.
DOI: | 10.1364/OL.42.004406 |
Bibtex: | @article{Eibl:17, author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Torben Bl\"{o}mker and Jan Philip Kolb and Christian Jirauschek and Robert Huber}, journal = {Opt. Lett.}, keywords = {Lasers, fiber; Lasers, Raman; Nonlinear optics, four-wave mixing; Scattering, stimulated Raman; Lasers, ytterbium ; Fiber lasers; Master oscillator power amplifiers; Nanosecond pulses; Raman scattering; Stimulated Brillouin scattering; Wavelength conversion}, number = {21}, pages = {4406--4409}, publisher = {Optica Publishing Group}, title = {Pulse-to-pulse wavelength switching of a nanosecond fiber laser by four-wave mixing seeded stimulated Raman amplification}, volume = {42}, month = {Nov}, year = {2017}, url = {https://opg.optica.org/ol/abstract.cfm?URI=ol-42-21-4406}, doi = {10.1364/OL.42.004406}, abstract = {We report on a multi-color fiber laser based on four-wave mixing (FWM) and stimulated Raman scattering (SRS), delivering rapidly wavelength switchable narrowband output at 1064, 1122, and 1186\&\#x00A0;nm. High-power pulses from a nanosecond pulsed fiber master oscillator power amplifier at 1064\&\#x00A0;nm are combined with 1122\&\#x00A0;nm of seed light for Raman amplification at the first Stokes order in a standard single-mode fiber. With increasing power, we observe a narrowband spectral component at 1186\&\#x00A0;nm, without any additional seed or resonator at this wavelength. We analyze this occurrence of a narrowband second Stokes order both experimentally and theoretically and suggest it is a result of FWM seeding of the SRS amplification in the fiber. We demonstrate that the wavelength shifting can be controlled electronically within microseconds for very rapid and even pulse-to-pulse wavelength changes. This wavelength conversion method can extend the spectral coverage of single-wavelength fiber lasers for biomedical imaging.}, } |
Jan Philip
Kolb,
Julian
Klee,
Tom
Pfeiffer, and
Robert
Huber,
1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160J.
1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT, in Optical Coherence Imaging Techniques and Imaging in Scattering Media II , Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. SPIE, 082017. pp. 104160J.
DOI: | 10.1117/12.2286854 |
Bibtex: | @inproceedings{10.1117/12.2286854, author = {Jan Philip Kolb and Julian Klee and Tom Pfeiffer and Robert Huber}, title = {{1060nm FDML laser with centimeter coherence length and 1.67 MHz sweep rate for full eye length and retinal ultra-widefield OCT}}, volume = {10416}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media II}, editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {104160J}, abstract = {We present a new design of a 1060nm Fourier Domain Mode Locked-Laser (FDML-Laser) that combines 1.67 MHz A-scan rate with a centimeter scale coherence length. The extended coherence length is achieved by synchronizing the cavity roundtrip time over the 75 nm sweep with a relative accuracy of 10<sup>-7</sup>. We will show that this requires careful combination of multiple fiber types in the cavity with a gradient heated chirped Fiber Bragg grating.}, keywords = {optical coherence tomograhy, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT}, year = {2017}, doi = {10.1117/12.2286854}, URL = {https://doi.org/10.1117/12.2286854} } |
Matthias
Eibl,
Sebastian
Karpf,
Hubertus
Hakert,
Daniel
Weng,
Tom
Pfeiffer,
Jan Philip
Kolb, and
Robert
Huber,
Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup, in Advances in Microscopic Imaging , Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So, Eds. SPIE, 072017. pp. 1041403.
Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup, in Advances in Microscopic Imaging , Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So, Eds. SPIE, 072017. pp. 1041403.
DOI: | 10.1117/12.2286035 |
Bibtex: | @inproceedings{10.1117/12.2286035, author = {Matthias Eibl and Sebastian Karpf and Hubertus Hakert and Daniel Weng and Tom Pfeiffer and Jan Philip Kolb and Robert Huber}, title = {{Single pulse two-photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate and an all fiber based setup }}, volume = {10414}, booktitle = {Advances in Microscopic Imaging}, editor = {Emmanuel Beaurepaire and Francesco Saverio Pavone and Peter T. C. So}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1041403}, abstract = {Newly developed microscopy methods have the goal to give researches in bio-molecular science a better understanding of processes ongoing on a cellular level. Especially two-photon excited fluorescence (TPEF) microscopy is a readily applied and widespread modality. Compared to one photon fluorescence imaging, it is possible to image not only the surface but also deeper lying structures. Together with fluorescence lifetime imaging (FLIM), which provides information on the chemical composition of a specimen, deeper insights on a molecular level can be gained. However, the need for elaborate light sources for TPEF and speed limitations for FLIM hinder an even wider application. In this contribution, we present a way to overcome this limitations by combining a robust and inexpensive fiber laser for nonlinear excitation with a fast analog digitization method for rapid FLIM imaging. The applied sub nanosecond pulsed laser source is perfectly suited for fiber delivery as typically limiting non-linear effects like self-phase or cross-phase modulation (SPM, XPM) are negligible. Furthermore, compared to the typically applied femtosecond pulses, our longer pulses produce much more fluorescence photons per single shot. In this paper, we show that this higher number of fluorescence photons per pulse combined with a high analog bandwidth detection makes it possible to not only use a single pulse per pixel for TPEF imaging but also to resolve the exponential time decay for FLIM. To evaluate our system, we acquired FLIM images of a dye solution with single exponential behavior to assess the accuracy of our lifetime determination and also FLIM images of a plant stem at a pixel rate of 1 MHz to show the speed performance of our single pulse two-photon FLIM (SP-FLIM) system.}, keywords = {Nonlinear microscopy, Fluorescence microscopy, Fiber optics imaging, Lifetime-based sensing, Lasers, fiber, Nonlinear optics, fibers}, year = {2017}, doi = {10.1117/12.2286035}, URL = {https://doi.org/10.1117/12.2286035} } |
Josef
Maertz,
Kathrin J.
Mohler,
Jan Philip
Kolb,
Thomas
Klein,
Aljoscha
Neubauer,
Anselm
Kampik,
Siegfried
Priglinger,
Wolfgang
Wieser,
Robert
Huber, and
Armin
Wolf,
INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes, Retina , vol. 37, no. 5, pp. 906-914, 05 2017.
INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes, Retina , vol. 37, no. 5, pp. 906-914, 05 2017.
DOI: | 10.1097/iae.0000000000001260 |
Bibtex: | @article{Maertz2017, author = {Maertz, J. and Mohler, K. J. and Kolb, J. P. and Klein, T. and Neubauer, A. and Kampik, A. and Priglinger, S. and Wieser, W. and Huber, R. and Wolf, A.}, title = {INTRAPAPILLARY PROLIFERATION IN OPTIC DISK PITS: Clinical Findings and Time-Related Changes}, journal = {Retina}, volume = {37}, number = {5}, pages = {906-914}, DOI = {10.1097/iae.0000000000001260}, year = {2017}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |
Matthias
Eibl,
Sebastian
Karpf,
Daniel
Weng,
Hubertus
Hakert,
Tom
Pfeiffer,
Jan Philip
Kolb, and
Robert
Huber,
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate, Biomed. Opt. Express , vol. 8, no. 7, pp. 3132-3142, 2017. Optica Publishing Group.
Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate, Biomed. Opt. Express , vol. 8, no. 7, pp. 3132-3142, 2017. Optica Publishing Group.
DOI: | 10.1364/BOE.8.003132 |
Bibtex: | @article{Eibl:17, author = {Matthias Eibl and Sebastian Karpf and Daniel Weng and Hubertus Hakert and Tom Pfeiffer and Jan Philip Kolb and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Fiber optics imaging; Nonlinear optics, fibers; Lasers, fiber; Lifetime-based sensing; Fluorescence microscopy; Nonlinear microscopy; Fourier domain mode locking; Image quality; Imaging techniques; Laser sources; Pulsed fiber lasers; Three dimensional sensing}, number = {7}, pages = {3132--3142}, publisher = {Optica Publishing Group}, title = {Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate}, volume = {8}, month = {Jul}, year = {2017}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-8-7-3132}, doi = {10.1364/BOE.8.003132}, abstract = {Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.}, } |
2016
Jan Philip
Kolb,
Thomas
Klein,
Matthias
Eibl,
Tom
Pfeiffer,
Wolfgang
Wieser, and
Robert
Huber,
Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, 2016. pp. 969703.
Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, 2016. pp. 969703.
DOI: | 10.1117/12.2214758 |
Bibtex: | @inproceedings{10.1117/12.2214758, author = {Jan Philip Kolb and Thomas Klein and Matthias Eibl and Tom Pfeiffer and Wolfgang Wieser and Robert Huber}, title = {{Megahertz FDML laser with up to 143nm sweep range for ultrahigh resolution OCT at 1050nm}}, volume = {9697}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX}, editor = {Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {969703}, abstract = {We present a new design of a Fourier Domain Mode Locked laser (FDML laser), which provides a new record in sweep range at ~1μm center wavelength: At the fundamental sweep rate of 2x417 kHz we reach 143nm bandwidth and 120nm with 4x buffering at 1.67MHz sweep rate. The latter configuration of our system is characterized: The FWHM of the point spread function (PSF) of a mirror is 5.6μm (in tissue). Human in vivo retinal imaging is performed with the MHz laser showing more details in vascular structures. Here we could measure an axial resolution of 6.0μm by determining the FWHM of specular reflex in the image. Additionally, challenges related to such a high sweep bandwidth such as water absorption are investigated.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz OCT}, year = {2016}, doi = {10.1117/12.2214758}, URL = {https://doi.org/10.1117/12.2214758} } |
2015
Kathrin J.
Mohler,
Wolfgang
Draxinger,
Thomas
Klein,
Jan Philip
Kolb,
Wolfgang
Wieser,
Christos
Haritoglou,
Anselm
Kampik,
James G.
Fujimoto,
Aljoscha
Neubauer,
Armin
Wolf, and
Robert
Huber,
Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm60° High-Definition MHz-OCT Imaging of the Choroid, Investigative Ophthalmology & Visual Science , vol. 56, no. 11, pp. 6284--6293, Oct. 2015.
Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm60° High-Definition MHz-OCT Imaging of the Choroid, Investigative Ophthalmology & Visual Science , vol. 56, no. 11, pp. 6284--6293, Oct. 2015.
DOI: | 10.1167/iovs.15-16670 |
Bibtex: | @article{10.1167/iovs.15-16670, author = {Mohler, Kathrin J. and Draxinger, Wolfgang and Klein, Thomas and Kolb, Jan Philip and Wieser, Wolfgang and Haritoglou, Christos and Kampik, Anselm and Fujimoto, James G. and Neubauer, Aljoscha S. and Huber, Robert and Wolf, Armin}, title = "{Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm}", journal = {Investigative Ophthalmology & Visual Science}, volume = {56}, number = {11}, pages = {6284-6293}, year = {2015}, month = {10}, abstract = "{ To demonstrate ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s for choroidal imaging in normal and diseased eyes over a ∼60° field of view. To investigate and correlate wide-field three-dimensional (3D) choroidal thickness (ChT) and vascular patterns using ChT maps and coregistered high-definition en face images extracted from a single densely sampled Megahertz-OCT (MHz-OCT) dataset. High-definition, ∼60° wide-field 3D datasets consisting of 2088 × 1024 A-scans were acquired using a 1.68 MHz prototype SS-OCT system at 1050 nm based on a Fourier-domain mode-locked laser. Nine subjects (nine eyes) with various chorioretinal diseases or without ocular pathology are presented. Coregistered ChT maps, choroidal summation maps, and depth-resolved en face images referenced to either the retinal pigment epithelium or the choroidal–scleral interface were generated using manual segmentation. Wide-field ChT maps showed a large inter- and intraindividual variance in peripheral and central ChT. In only four of the nine eyes, the location with the largest ChT was coincident with the fovea. The anatomy of the large lumen vessels of the outer choroid seems to play a major role in determining the global ChT pattern. Focal ChT changes with large thickness gradients were observed in some eyes. Different ChT and vascular patterns could be visualized over ∼60° in patients for the first time using OCT. Due to focal ChT changes, a high density of thickness measurements may be favorable. High-definition depth-resolved en face images are complementary to cross sections and thickness maps and enhance the interpretation of different ChT patterns. }", issn = {1552-5783}, doi = {10.1167/iovs.15-16670}, url = {https://doi.org/10.1167/iovs.15-16670}, eprint = {https://arvojournals.org/arvo/content\_public/journal/iovs/934564/i1552-5783-56-11-6284.pdf}, } |
Lukas
Reznicek,
Jan Philip
Kolb,
Thomas
Klein,
Kathrin J.
Mohler,
Wolfgang
Wieser,
Robert
Huber,
Marcus
Kernt,
Josef
Märtz, and
Aljoscha
Neubauer,
Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy, Journal of Diabetes Research , vol. 2015, pp. 305084, 07 2015. Hindawi Publishing Corporation.
Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy, Journal of Diabetes Research , vol. 2015, pp. 305084, 07 2015. Hindawi Publishing Corporation.
DOI: | 10.1155/2015/305084 |
Bibtex: | @article{Reznicek2015, author = {Reznicek, Lukas and Kolb, Jan P. and Klein, Thomas and Mohler, Kathrin J. and Wieser, Wolfgang and Huber, Robert and Kernt, Marcus and Märtz, Josef and Neubauer, Aljoscha S.}, title = {Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy}, journal = {Journal of Diabetes Research}, volume = {2015, Article ID 305084}, pages = {1-5}, DOI = {10.1155/2015/305084}, url = {http://dx.doi.org/10.1155/2015/305084}, year = {2015}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |
Jan Philip
Kolb,
Thomas
Klein,
Wolfgang
Wieser,
Wolfgang
Draxinger, and
Robert
Huber,
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 95410Z.
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second, in Optical Coherence Imaging Techniques and Imaging in Scattering Media , Brett E. Bouma and Maciej Wojtkowski, Eds. SPIE, 072015. pp. 95410Z.
DOI: | 10.1117/12.2183768 |
Bibtex: | @inproceedings{10.1117/12.2183768, author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber}, title = {{High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second}}, volume = {9541}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media}, editor = {Brett E. Bouma and Maciej Wojtkowski}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {95410Z}, abstract = {We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode locking, FDML, MHz-OCT}, year = {2015}, doi = {10.1117/12.2183768}, URL = {https://doi.org/10.1117/12.2183768} } |
Jan Philip
Kolb,
Thomas
Klein,
Corinna L.
Kufner,
Wolfgang
Wieser,
Aljoscha
Neubauer, and
Robert
Huber,
Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle, Biomed. Opt. Express , vol. 6, no. 5, pp. 1534--1552, 05 2015. Optica Publishing Group.
Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle, Biomed. Opt. Express , vol. 6, no. 5, pp. 1534--1552, 05 2015. Optica Publishing Group.
DOI: | 10.1364/BOE.6.001534 |
Bibtex: | @article{Kolb:15, author = {Jan Philip Kolb and Thomas Klein and Corinna L. Kufner and Wolfgang Wieser and Aljoscha S. Neubauer and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Medical optics instrumentation; Lasers, fiber; Medical and biological imaging; Ophthalmic optics and devices ; Optical coherence tomography; Adaptive optics; Full field optical coherence tomography; Image quality; Imaging techniques; Laser scanning; Three dimensional imaging}, number = {5}, pages = {1534--1552}, publisher = {Optica Publishing Group}, title = {Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle}, volume = {6}, month = {May}, year = {2015}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-6-5-1534}, doi = {10.1364/BOE.6.001534}, abstract = {We evaluate strategies to maximize the field of view (FOV) of in vivo retinal OCT imaging of human eyes. Three imaging modes are tested: Single volume imaging with 85{\textdegree} FOV as well as with 100{\textdegree} and stitching of five 60{\textdegree} images to a 100{\textdegree} mosaic (measured from the nodal point). We employ a MHz-OCT system based on a 1060nm Fourier domain mode locked (FDML) laser with a depth scan rate of 1.68MHz. The high speed is essential for dense isotropic sampling of the large areas. Challenges caused by the wide FOV are discussed and solutions to most issues are presented. Detailed information on the design and characterization of our sample arm optics is given. We investigate the origin of an angle dependent signal fall-off which we observe towards larger imaging angles. It is present in our 85{\textdegree} and 100{\textdegree} single volume images, but not in the mosaic. Our results suggest that 100{\textdegree} FOV OCT is possible with current swept source OCT technology.}, } |
Tom
Pfeiffer,
Wolfgang
Wieser,
Thomas
Klein,
Markus
Petermann,
Jan Philip
Kolb,
Matthias
Eibl, and
Robert
Huber,
Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, 042015. pp. 96970S-96970S-5.
Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX , Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin, Eds. SPIE, 042015. pp. 96970S-96970S-5.
DOI: | 10.1117/12.2214788 |
Bibtex: | @inproceedings{10.1117/12.2214788, author = {Tom Pfeiffer and Wolfgang Wieser and Thomas Klein and Markus Petermann and Jan-Phillip Kolb and Matthias Eibl and Robert Huber}, title = {{Flexible A-scan rate MHz OCT: computational downscaling by coherent averaging}}, volume = {9697}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XX}, editor = {Joseph A. Izatt and James G. Fujimoto and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {96970S}, abstract = {In order to realize fast OCT-systems with adjustable line rate, we investigate averaging of image data from an FDML based MHz-OCT-system. The line rate can be reduced in software and traded in for increased system sensitivity and image quality. We compare coherent and incoherent averaging to effectively scale down the system speed of a 3.2 MHz FDML OCT system to around 100 kHz in postprocessing. We demonstrate that coherent averaging is possible with MHz systems without special interferometer designs or digital phase stabilisation. We show OCT images of a human finger knuckle joint in vivo with very high quality and deep penetration.}, keywords = {Optical coherence tomography, OCT, Fourier domain mode locking, FDML, MHz OCT, averaging, tunable laser}, year = {2016}, doi = {10.1117/12.2214788}, URL = {https://doi.org/10.1117/12.2214788} } |
Jan Philip
Kolb,
Philipp
Schwarz,
Thomas
Klein,
Wolfgang
Wieser, and
Robert
Huber,
Dual parametric compounding approach for speckle reduction in OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 93123G.
Dual parametric compounding approach for speckle reduction in OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 93123G.
DOI: | 10.1117/12.2077659 |
Bibtex: | @inproceedings{10.1117/12.2077659, author = {Jan Philip Kolb and Philipp Schwarz and Thomas Klein and Wolfgang Wieser and Robert Huber}, title = {{Dual parametric compounding approach for speckle reduction in OCT}}, volume = {9312}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX}, editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {93123G}, abstract = {OCT as a coherent imaging technique inherently suffers from speckle. We present a new dual parametric compounding approach to reduce speckle. The approach is to acquire several OCT volumes with different numerical apertures (NAs). Then in post processing, a first spatial compounding step is performed by averaging of adjacent B-frames. In a second step data from the different volume is averaged. Retinal imaging data comparing this idea with standard spatial compounding is presented and analyzed and necessary parameters such as the required variation of the NA and number of different NAs are discussed}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode lockng, FDML, MHz OCT}, year = {2015}, doi = {10.1117/12.2077659}, URL = {https://doi.org/10.1117/12.2077659} } |
Jan Philip
Kolb,
Thomas
Klein,
Wolfgang
Wieser,
Wolfgang
Draxinger, and
Robert
Huber,
Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 931202.
Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX , James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin, Eds. SPIE, 032015. pp. 931202.
DOI: | 10.1117/12.2077147 |
Bibtex: | @inproceedings{10.1117/12.2077147, author = {Jan Philip Kolb and Thomas Klein and Wolfgang Wieser and Wolfgang Draxinger and Robert Huber}, title = {{Full volumetric video rate OCT of the posterior eye with up to 195.2 volumes/s}}, volume = {9312}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIX}, editor = {James G. Fujimoto and Joseph A. Izatt and Valery V. Tuchin}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {931202}, abstract = {Full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate is presented. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan. The volume rates vary between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.}, keywords = {Optical coherence tomography, OCT, tunable laser, Fourier domain mode lockng, FDML, MHz OCT}, year = {2015}, doi = {10.1117/12.2077147}, URL = {https://doi.org/10.1117/12.2077147} } |
2014
Karsten Ulrich
Kortuem,
Jan Philip
Kolb,
Thomas
Klein,
Kathrin J.
Mohler,
Anselm
Kampik,
Aljoscha
Neubauer,
Wolfgang
Wieser,
Robert
Huber, and
Christos
Haritoglou,
Wide Field MHz OCT imaging of the vitreoretinal interface, Invest. Ophthalmol. Vis. Sci. , vol. 55, no. 13, pp. 1619, 04 2014.
Wide Field MHz OCT imaging of the vitreoretinal interface, Invest. Ophthalmol. Vis. Sci. , vol. 55, no. 13, pp. 1619, 04 2014.
Weblink: | https://iovs.arvojournals.org/article.aspx?articleid=2266879 |
Bibtex: | @article{Kortuem2014, author = {Kortuem, Karsten Ulrich and Kolb, Jan Philip and Klein, Thomas and Mohler, Kathrin and Kampik, Anselm and Neubauer, Aljoscha S. and Wieser, Wolfgang and Huber, Robert and Haritoglou, Christos}, title = {Wide Field MHz OCT imaging of the vitreoretinal interface}, journal = {Investigative Ophthalmology & Visual Science}, volume = {55}, number = {13}, pages = {1619-1619}, abstract = { PurposeTo investigate changes caused by vitreoretinal interface disease with a multi-MHz OCT over a wide field of view of 60°. MethodsWe used custom swept-source OCT device with a 1060nm Fourier-domain mode-locked laser source achieving a line rate of 1.68MHz. Within 1.82s datasets consisting of 2088x1024 A-scans over 60° were acquired from 5 patients with vitreoretinal traction due to VMTS and 3 patients with vascular pathology. The densely sampled three dimensional datasets were investigated in B-Scan cross-sections as well as en-face images and 3D reconstructions. ResultsVitreoretinal traction could be imaged well in most of the cases, although the current sensitivity of the system limited image quality. Across the whole 60° field of view in the OCT datasets vitreoretinal tractions could be topographically assessed, always including the macula and optic disc, where vitreous anchorage could be shown. By means of the depth-scans as part of the 3D OCT volume we could image traction-associated retinal changes such as retinal elevation or RPE detachment. ConclusionsThis unique three dimensional visualization of the retina over 60° field of view with a MHz OCT is feasible in patients with vitreoretinal interface disease and might offer additional clinical insights on the three-dimensional topology of tractional changes. Three dimensional Wide Field MHz OCT retinal and vitreous visualization.}, ISSN = {1552-5783}, url = {http://dx.doi.org/}, year = {2014}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |
Thomas
Klein,
Wolfgang
Draxinger,
Kathrin J.
Mohler,
Jan Philip
Kolb,
Wolfgang
Wieser,
Anselm
Kampik,
Aljoscha
Neubauer,
Armin
Wolf, and
Robert
Huber,
Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 1620, 04 2014.
Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 1620, 04 2014.
Weblink: | https://iovs.arvojournals.org/article.aspx?articleid=2266882 |
Bibtex: | @article{Klein2014, author = {Klein, Thomas and Draxinger, Wolfgang and Mohler, Kathrin and Kolb, Jan Philip and Wieser, Wolfgang and Kampik, Anselm and Neubauer, Aljoscha S. and Wolf, Armin and Huber, Robert}, title = {Wide-field choroidal thickness and en-face maps of patients created with MHz-OCT}, journal = {Investigative Ophthalmology & Visual Science}, volume = {55}, number = {13}, pages = {1620-1620}, abstract = { PurposeTo study the feasibility of simultaneous peripheral and central choroidal thickness measurement and en-face visualization in patients with a variety of diseases, using a single high-resolution wide-field MHz-OCT dataset spanning more than 50 degrees field of view. MethodsIn this retrospective study, choroidal morphology of 29 patients imaged with MHz-OCT was assessed. MHz-OCT is a custom SS-OCT operating at 1060nm and an axial line rate of 1.68MHz. The high speed, more than 30 times faster than current commercial devices, enabled a very high resolution scan protocol of 2088x1024 A-scans over a wide field of ~60 degrees. However, due to the very high speed, signal strength is lower compared to slower devices. Hence, thickness and structure maps were only created for selected datasets: The positions of Bruch’s membrane and choroid sclera junction were determined manually by a trained observer a subset of all A-scans, from which thickness and intensity maps were created. ResultsDespite relative low signal strength, the choroid sclera junction could be clearly observed over the entire unshadowed image area in 15 of 29 patients. Apart from shadowing, visibility of this junction shows strong variation even within a single dataset due to varying retinal thickness, eye-blinks, saccades and retinal curvature. Thus, thickness could be evaluated at least in some areas for all 29 patients, especially in the periphery. Moreover, choroidal thickness varied considerably intra- and interindividually. In two patients, abrupt changes of the choroid were observed in the temporal periphery, which may resemble morphology or imaging artifact. In addition to thickness, en-face choroidal structure maps were extracted from the segmented OCT datasets. Visibility of choroidal vasculature in these maps correlates with choroidal thickness. ConclusionsChoroidal thickness and structure in patients could be visualized over large areas for the first time. Due to focal choroidal thickness changes with large thickness gradients, high-density scan protocols may be favorable for OCT-based investigations of the choroid. En-face images of the choroid can be extracted from these high-resolution datasets, but the influence of choroidal thickness on the image information should be taken into account. Choroidal en-face image (top), color-coded thickness map with superimposed structural image (middle) and OCT B-frame (bottom) for two eyes (A,B).}, ISSN = {1552-5783}, url = {http://dx.doi.org/}, year = {2014}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |
Jan Philip
Kolb,
Thomas
Klein,
Kathrin J.
Mohler,
Wolfgang
Wieser,
Lukas
Reznicek,
Marcus
Kernt,
Anselm
Kampik,
Aljoscha
Neubauer, and
Robert
Huber,
Widefield Megahertz (MHz) OCT of diabetic retinopathy, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 5018, 04 2014.
Widefield Megahertz (MHz) OCT of diabetic retinopathy, Investigative Ophthalmology & Visual Science , vol. 55, no. 13, pp. 5018, 04 2014.
Weblink: | https://iovs.arvojournals.org/article.aspx?articleid=2270590 |
Bibtex: | @article{Kolb2014, author = {Kolb, Jan Philip and Klein, Thomas and Mohler, Kathrin and Wieser, Wolfgang and Reznicek, Lukas and Kernt, Marcus and Kampik, Anselm and Neubauer, Aljoscha S. and Huber, Robert}, title = {Widefield Megahertz (MHz) OCT of diabetic retinopathy}, journal = {Investigative Ophthalmology & Visual Science}, volume = {55}, number = {13}, pages = {5018-5018}, abstract = { PurposeTo investigate morphological appearance of diabetic retinopathy and laser effects in panretinal laser photocoagulation with a widefield MHz OCT (60° field of view, 120° center angle). MethodsA custom swept-source OCT device with a 1060nm Fourier-domain mode-locked laser source achieving a line rate of 1.68MHz was used to investigate 15 consecutive patients with diabetic retinopathy. Within 1.82s datasets consisting of 2088x1024 A-scans over 60° were acquired. The densely sampled three dimensional datasets were investigated in various B-Scan cross-sections as well as en-face images and 3D reconstructions. Selected findings were compared with SLO images from a widefield SLO (Optos, Dunfermeline, UK). ResultsOn the densely sampled 3D and en-face images, hard exsudates, peripheral laser spots as well as proliferative neovascularization were readily detected. Characteristic structural changes resulting from laser burns could easily be visualized across the whole field of view in the OCT datasets. In addition, depth-scans and B-scans allowed to identify additional structural changes including IS/OS disruption, RPE detachment or neovascularisation reaching into the vitreous across the field of view. ConclusionsThree dimensional visualization of the retina over 60° field of view with a MHz OCT is feasible in patients with diabetic retinopathy. It might allow additional clinical insights in peripheral changes such as laser spots or retinal neovascularisation. 3D reconstruction of OCT dataset of patient with diabetic retinopathy with neovascularization (green), hard exsudates (yellow), epiretinal membrane and peripheral retinal scars after panretinal laser treatment (blue). Indications with arrows are examplatory. Top: En-face of same patient as in figure 1. Red line indicates the position of B-Frame below. Retinal scars due to focal laser coagulation temporal of the fovea visible. Bottom: Neovascularisation (green) reaching into the vitreous is visible on the left side. Retinal scars especially on RPE level due to panretinal laser treatment (blue) are observable.}, ISSN = {1552-5783}, url = {http://dx.doi.org/}, year = {2014}, keywords = {AG-Huber_OCT}, type = {Journal Article} } |