Madita Göb
Doktorandin / PhD Student
AG Huber
Universität zu Lübeck
Institut für Biomedizinische Optik
Peter-Monnik-Weg 4
23562 Lübeck
Gebäude 81,
Raum 61
Email: | m.goeb(at)uni-luebeck.de |
Phone: | +49 451 3101 3234 |
Fax: | +49 451 3101 3233 |
2024
Simon
Lotz,
Madita
Göb,
Sven
Böttger,
Linh
Ha-Wissel,
Jennifer
Hundt,
Floris
Ernst, and
Robert
Huber,
Large area robotically assisted optical coherence tomography (LARA-OCT), Biomed. Opt. Express , vol. 15, no. 6, pp. 3993-4009, 06 2024. Optica Publishing Group.
Large area robotically assisted optical coherence tomography (LARA-OCT), Biomed. Opt. Express , vol. 15, no. 6, pp. 3993-4009, 06 2024. Optica Publishing Group.
DOI: | 10.1364/BOE.525524 |
Bibtex: | @article{Lotz:24, author = {Simon Lotz and Madita G\"{o}b and Sven B\"{o}ttger and Linh Ha-Wissel and Jennifer Hundt and Floris Ernst and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {Angiography; Biomedical imaging; In vivo imaging; Machine vision; Point clouds; Spectral domain optical coherence tomography}, number = {6}, pages = {3993--4009}, publisher = {Optica Publishing Group}, title = {Large area robotically assisted optical coherence tomography (LARA-OCT)}, volume = {15}, month = {Jun}, year = {2024}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-15-6-3993}, doi = {10.1364/BOE.525524}, abstract = {We demonstrate large-area robotically assisted optical coherence tomography (LARA-OCT), utilizing a seven-degree-of-freedom robotic arm in conjunction with a 3.3\&\#x2005;MHz swept-source OCT to raster scan samples of arbitrary shape. By combining multiple fields of view (FOV), LARA-OCT can probe a much larger area than conventional OCT. Also, nonplanar and curved surfaces like skin on arms and legs can be probed. The lenses in the LARA-OCT scanner with their normal FOV can have fewer aberrations and less complex optics compared to a single wide field design. This may be especially critical for high resolution scans. We directly use our fast MHz-OCT for tracking and stitching, making additional machine vision systems like cameras, positioning, tracking or navigation devices obsolete. This also eliminates the need for complex coordinate system registration between OCT and the machine vision system. We implemented a real time probe-to-surface control that maintains the probe alignment orthogonal to the sample by only using surface information from the OCT images. We present OCT data sets with volume sizes of 140\&\#x2009;\&\#x00D7;\&\#x2009;170\&\#x2009;\&\#x00D7;\&\#x2009;20 mm3, captured in 2.5 minutes.}, } |
Mark
Ellrichmann,
Berenice
Schulte,
Claudio C
Conrad,
Stephan
Schoch,
Johannes
Bethge,
Marcus
Seeger,
Robert
Huber,
Madita
Göb,
Alexander
Arlt,
Susanna
Nikolaus,
Christoph
Röcken, and
Stefan
Schreiber,
Contrast enhanced endoscopic ultrasound detects early therapy response following anti-TNF-therapy in patients with ulcerative colitis, Journal of Crohn's and Colitis , pp. jjae034, 03 2024.
Contrast enhanced endoscopic ultrasound detects early therapy response following anti-TNF-therapy in patients with ulcerative colitis, Journal of Crohn's and Colitis , pp. jjae034, 03 2024.
DOI: | 10.1093/ecco-jcc/jjae034 |
Bibtex: | @article{10.1093/ecco-jcc/jjae034, author = {Ellrichmann, Mark and Schulte, Berenice and Conrad, Claudio C and Schoch, Stephan and Bethge, Johannes and Seeger, Marcus and Huber, Robert and Goeb, Madita and Arlt, Alexander and Nikolaus, Susanna and Röcken, Christoph and Schreiber, Stefan}, title = "{Contrast enhanced endoscopic ultrasound detects early therapy response following anti-TNF-therapy in patients with ulcerative colitis}", journal = {Journal of Crohn's and Colitis}, pages = {jjae034}, year = {2024}, month = {03}, abstract = "{Though colonoscopy plays a crucial role in assessing active ulcerative colitis (aUC), its scope is limited to the mucosal surface. Endoscopic ultrasound (EUS) coupled with contrast-enhancement (dCEUS) can precisely quantify bowel wall thickness and microvascular circulation, potentially enabling the quantitative evaluation of inflammation.We conducted a prospective, longitudinal study to assess therapy response using dCEUS in aUC patients undergoing treatment with adalimumab (ADA) or infliximab (IFX).30 ADA- and 15 IFX-treated aUC patients were examined at baseline and at 2, 6, 14 weeks of therapy and 48 weeks of follow-up. Bowel wall thickness (BWT) was measured by EUS in the rectum. Vascularity was quantified by dCEUS using Rise Time (RT) and Time To Peak (TTP). Therapy response was defined after 14 weeks using the Mayo Score.Patients with aUC displayed a mean BWT of 3.9±0.9 mm. In case of response to ADA/IFX a significant reduction in BWT was observed after 2 weeks (p=0.04), whereas non-responders displayed no significant changes. The TTP was notably accelerated at baseline and significantly normalised by week 2 in responders (p=0.001), while non-responders exhibited no significant alterations (p=0.9). At week 2, the endoscopic Mayo score did not exhibit any changes, thus failing to predict treatment responses.dCEUS enables the early detection of therapy response in patients with aUC, which serves as a predictive marker for long term clinical success. Therefore, dCEUS serves as a diagnostic tool for assessing the probability of future therapy success.}", issn = {1873-9946}, doi = {10.1093/ecco-jcc/jjae034}, url = {https://doi.org/10.1093/ecco-jcc/jjae034}, eprint = {https://academic.oup.com/ecco-jcc/advance-article-pdf/doi/10.1093/ecco-jcc/jjae034/56911128/jjae034.pdf}, } |
Berenice
Schulte,
Madita
Göb,
Awanish Pratap
Singh,
Simon
Lotz,
Wolfgang
Draxinger,
Mario
Pieper,
Maik
Rahlves,
Robert
Huber, and
Mark
Ellrichmann,
High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy, Scientific Reports , vol. 14, no. 1, pp. 4672, 02 2024.
High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy, Scientific Reports , vol. 14, no. 1, pp. 4672, 02 2024.
DOI: | 10.1038/s41598-024-55338-5 |
Bibtex: | @article{RN5474, author = {Schulte, Berenice;Göb, Madita;Singh, Awanish Pratap;Lotz, Simon;Draxinger, Wolfgang;Heimke, Marvin;pieper, Mario;Heinze, Tillmann;Wedel, Thilo;Rahlves, Maik;Huber, Robert and Ellrichmann, Mark}, title = {High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy}, journal = {Scientific Reports}, volume = {14}, number = {1}, pages = {4672}, ISSN = {2045-2322}, DOI = {10.1038/s41598-024-55338-5}, url = {https://doi.org/10.1038/s41598-024-55338-5}, year = {2024}, type = {Journal Article} } |
Awanish Pratap
Singh,
Madita
Göb,
Martin
Ahrens,
Tim
Eixmann,
Berenice
Schulte,
Hinnerk
Schulz-Hildebrandt,
Gereon
Hüttmann,
Mark
Ellrichmann,
Robert
Huber, and
Maik
Rahlves,
Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization, Opt. Express , vol. 32, no. 4, pp. 5809--5825, 2024. Optica Publishing Group.
Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization, Opt. Express , vol. 32, no. 4, pp. 5809--5825, 2024. Optica Publishing Group.
DOI: | 10.1364/OE.514636 |
Bibtex: | @article{Singh:24, author = {Awanish Pratap Singh and Madita G\"{o}b and Martin Ahrens and Tim Eixmann and Berenice Schulte and Hinnerk Schulz-Hildebrandt and Gereon H\"{u}ttmann and Mark Ellrichmann and Robert Huber and Maik Rahlves}, journal = {Opt. Express}, keywords = {Biomedical imaging; Endoscopic imaging; Imaging systems; Optical coherence tomography; Real time imaging; Vertical cavity surface emitting lasers}, number = {4}, pages = {5809--5825}, publisher = {Optica Publishing Group}, title = {Virtual Hall sensor triggered multi-MHz endoscopic OCT imaging for stable real-time visualization}, volume = {32}, month = {Feb}, year = {2024}, url = {https://opg.optica.org/oe/abstract.cfm?URI=oe-32-4-5809}, doi = {10.1364/OE.514636}, abstract = {Circumferential scanning in endoscopic imaging is crucial across various disciplines, and optical coherence tomography (OCT) is often the preferred choice due to its high-speed, high-resolution, and micron-scale imaging capabilities. Moreover, real-time and high-speed 3D endoscopy is a pivotal technology for medical screening and precise surgical guidance, among other applications. However, challenges such as image jitter and non-uniform rotational distortion (NURD) are persistent obstacles that hinder real-time visualization during high-speed OCT procedures. To address this issue, we developed an innovative, low-cost endoscope that employs a brushless DC motor for scanning, and a sensorless technique for triggering and synchronizing OCT imaging with the scanning motor. This sensorless approach uses the motor\&\#x2019;s electrical feedback (back electromotive force, BEMF) as a virtual Hall sensor to initiate OCT image acquisition and synchronize it with a Fourier Domain Mode-Locked (FDML)-based Megahertz OCT system. Notably, the implementation of BEMF-triggered OCT has led to a substantial reduction in image jitter and NURD (\<4 mrad), thereby opening up a new window for real-time visualization capabilities. This approach suggests potential benefits across various applications, aiming to provide a more accurate, deployable, and cost-effective solution. Subsequent studies can explore the adaptability of this system to specific clinical scenarios and its performance under practical endoscopic conditions.}, } |
2023
Sazgar
Burhan,
Nicolas
Detrez,
Madita
Göb,
Matteo Mario
Bonsanto,
Ralf
Brinkmann, and
Robert
Huber,
Advanced FFT-based contrast approach for MHz optical coherence elastography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 1263215.
Advanced FFT-based contrast approach for MHz optical coherence elastography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 1263215.
DOI: | 10.1117/12.2670957 |
Bibtex: | @inproceedings{10.1117/12.2670957, author = {Sazgar Burhan and Nicolas Detrez and Madita G{\"o}b and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber}, title = {{Advanced FFT-based contrast approach for MHz optical coherence elastography}}, volume = {12632}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V}, editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1263215}, abstract = {Optical coherence elastography represents mechanical characteristics of biological tissue in so-called mechanical contrast maps. In addition to the standard intensity image, the contrast map illustrates numerous mechanical tissue features that would otherwise be undetectable. This is of great interest as abnormal physiological changes influence the mechanical behavior of the tissue. We demonstrate an advanced mechanical contrast approach based on the phase signal of our 3.2 MHz optical coherence tomography system. The robustness and performance of this contrast approach is evaluated and discussed based on preliminary results. }, keywords = {Optical Coherence Tomography, OCT, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, OCE, Phase-sensitive OCT, Biomechanics}, year = {2023}, doi = {10.1117/12.2670957}, URL = {https://doi.org/10.1117/12.2670957} } |
Madita
Göb,
Simon
Lotz,
Linh
Ha-Wissel,
Sazgar
Burhan,
Sven
Böttger,
Floris
Ernst,
Jennifer
Hundt, and
Robert
Huber,
Advances in large area robotically assisted OCT (LARA-OCT): towards drive-by continuous motion imaging, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321N.
Advances in large area robotically assisted OCT (LARA-OCT): towards drive-by continuous motion imaging, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321N.
DOI: | 10.1117/12.2670950 |
Bibtex: | @inproceedings{10.1117/12.2670950, author = {Madita G{\"o}b and Simon Lotz and Linh Ha-Wissel and Sazgar Burhan and Sven B{\"o}ttger and Floris Ernst and Jennifer Hundt and Robert Huber}, title = {{Advances in large area robotically assisted OCT (LARA-OCT): towards drive-by continuous motion imaging}}, volume = {12632}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V}, editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {126321N}, abstract = {Optical coherence tomography is a powerful imaging technique to visualize and localize depth-dependent tissue structure to differentiate between healthy and pathological conditions. However, conventional OCT systems are only capable of detecting small areas. To overcome this limitation, we have developed a large area robotically assisted OCT (LARA-OCT) system for automatic acquisition of large OCT images. Using mosaic pattern acquisition and subsequent stitching, we previously demonstrated initial in vivo OCT skin images beyond 10 cm². To improve acquisition speed and reduce dead times, we here demonstrate and analyze LARA-OCT with a new drive-by continuous motion imaging protocol.}, keywords = {Optical Coherence Tomography, Fourier Domain Mode Locking, Robotically Assisted Imaging Systems, Three-dimensional image acquisition, Large Area Scanning, Skin Imaging, OCT, FDML}, year = {2023}, doi = {10.1117/12.2670950}, URL = {https://doi.org/10.1117/12.2670950} } |
Simon
Lotz,
Madita
Göb,
Wolfgang
Draxinger,
Anneli
Dick, and
Robert
Huber,
13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI: | 10.1109/CLEO/Europe-EQEC57999.2023.10231419 |
Bibtex: | @INPROCEEDINGS{10231419, author={Lotz, Simon and Göb, Madita and Draxinger, Wolfgang and Dick, Anneli and Huber, Robert}, booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, title={13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography}, year={2023}, volume={}, number={}, pages={1-1}, doi={10.1109/CLEO/Europe-EQEC57999.2023.10231419}} |
Awanish P.
Singh,
Madita
Göb,
Martin
Ahrens,
Tim
Eixmann,
Hinnerk
Schulz-Hildebrandt,
Gereon
Hüttmann,
Robert
Huber, and
Maik
Rahlves,
Synchronous high-speed OCT imaging with sensor less brushless DC motor and FDML laser in a phase-locked loop, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236703.
Synchronous high-speed OCT imaging with sensor less brushless DC motor and FDML laser in a phase-locked loop, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 1236703.
DOI: | 10.1117/12.2652955 |
Bibtex: | @inproceedings{10.1117/12.2652955, author = {Awanish Pratap Singh and Madita G{\"o}b and Martin Ahrens and Tim Eixmann and Hinnerk Schulz-Hildebrandt and Gereon H{\"u}ttmann and Robert Huber and Maik Rahlves}, title = {{Synchronous high-speed OCT imaging with sensor less brushless DC motor and FDML laser in a phase-locked loop}}, volume = {12367}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1236703}, abstract = {High-speed endoscopic optical coherence tomography (OCT) imaging in the MHz range has shown great potential in various medical applications ranging from cancer screening to vascular disease monitoring. High-speed imaging always suffers from non-uniform rotational distortion (NURD) due to asynchronous motor rotation with the OCT system. Several research groups have previously attempted to solve this problem, using either an expensive motor with a sensor or numerical correction after data acquisition. However, both techniques pose challenges for practical use. Therefore, in this study, we use an inexpensive sensorless brushless DC motor with a Fourier domain mode-locked (FDML) laser-based MHz OCT system and try to resolve the problem of synchronization using three different modalities, (i) Slave-mode: The FDML frequency serves as a master frequency for the motor, which is phase-locked to the FDML frequency, (ii) Master-mode: The revolution trigger obtained from the motor’s back electromotive force (BEMF) signal serves as a trigger signal for the OCT imaging system, (iii) Both: Fully synchronized setup, where the motor rotation is synchronized with the laser and the imaging system is synchronized with the motor to achieve phase-stable OCT imaging. The first case slightly fluctuates in live preview and imaging due to the absence of a revolution trigger, while the second has varying motor speeds. Therefore, we use the third case to phase-lock the motor with FDML and get a distortion-free live preview and image acquisition. Finally, we demonstrate high-speed SS-OCT structural imaging (at 3.3 MHz A-scan rates) of a finger with a 16 mm diameter probe (at 40,000 rpm).}, keywords = {Optical Coherence Tomography, Endoscopy, FDML , Closed Loop Motor Control, NURD compensation, Brushless DC Motor, Back Electromotive Force}, year = {2023}, doi = {10.1117/12.2652955}, URL = {https://doi.org/10.1117/12.2652955} } |
Sazgar
Burhan,
Nicolas
Detrez,
Katharina
Rewerts,
Madita
Göb,
Christian
Hagel,
Matteo M.
Bonsanto,
Dirk
Theisen-Kunde,
Robert
Huber, and
Ralf
Brinkmann,
Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 123680F.
Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 123680F.
DOI: | 10.1117/12.2648301 |
Bibtex: | @inproceedings{10.1117/12.2648301, author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann}, title = {{Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate}}, volume = {12368}, booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI}, editor = {Caroline Boudoux and James W. Tunnell}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {123680F}, abstract = {Optical coherence elastography (OCE) offers the possibility of obtaining the mechanical behavior of a tissue. When also using a non-contact mechanical excitation, it mimics palpation without interobserver variability. One of the most frequently used techniques is phase-sensitive OCE. Depending on the system, depth-resolved changes in the sub-µm to nm range can be detected and visualized volumetrically. Such an approach is used in this work to investigate and detect transitions between healthy and tumorous brain tissue as well as inhomogeneities in the tumor itself to assist the operating surgeon during tumor resection in the future. We present time-resolved, phase-sensitive OCE measurements on various ex vivo brain tumor samples using an ultra-fast 3.2 MHz swept-source optical coherence tomography (SS-OCT) system with a frame rate of 2.45 kHz. 4 mm line scans are acquired which, in combination with the high imaging speed, allow monitoring and investigation of the sample's behavior in response to the mechanical load. Therefore, an air-jet system applies a 200 ms short air pulse to the sample, whose non-contact property facilitates the possibility for future in vivo measurements. Since we can temporally resolve the response of the sample over the entire acquisition time, the mechanical properties are evaluated at different time points with depth resolution. This is done by unwrapping the phase data and performing subsequent assessment. Systematic ex vivo brain tumor measurements were conducted and visualized as distribution maps. The study outcomes are supported by histological analyses and examined in detail.}, keywords = { Optical Coherence Tomography, Optical Coherence Elastography, Phase-sensitive OCT, Fourier Domain Mode Locking, Brain Tumor, Phase Unwrapping, Tissue Characterization, Biomechanics}, year = {2023}, doi = {10.1117/12.2648301}, URL = {https://doi.org/10.1117/12.2648301} } |
Madita
Göb,
Simon
Lotz,
Linh
Ha-Wissel,
Sazgar
Burhan,
Sven
Böttger,
Floris
Ernst,
Jennifer
Hundt, and
Robert
Huber,
Large area robotically assisted optical coherence tomography (LARA-OCT) for skin imaging with MHz-OCT surface tracking, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 123670C.
Large area robotically assisted optical coherence tomography (LARA-OCT) for skin imaging with MHz-OCT surface tracking, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032023. pp. 123670C.
DOI: | 10.1117/12.2652616 |
Bibtex: | @inproceedings{10.1117/12.2652616, author = {Madita G{\"o}b and Simon Lotz and Linh Ha-Wissel and Sazgar Burhan and Sven B{\"o}ttger and Floris Ernst and Jennifer Hundt and Robert Huber}, title = {{Large area robotically assisted optical coherence tomography (LARA-OCT) for skin imaging with MHz-OCT surface tracking}}, volume = {12367}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {123670C}, abstract = {Optical coherence tomography (OCT) is a powerful imaging technique to non-invasively differentiate between healthy skin and pathological conditions. Unfortunately, commercially available OCT-systems are typically slow and not capable of scanning large areas at reasonable speed. Since skin lesions may extend over several square centimeters, potential inflammatory infiltrates remain undetected. Here, we present large area robotically assisted OCT (LARA-OCT) for skin imaging. Therefor a collaborative robot is combined with an existing, home-built 3.3 MHz-OCT-system and for surface tracking an online probe-to-surface control is implemented which is solely based on the OCT surface signal. It features a combined surface-distance and surface-orientation closed-loop control algorithm, which enables automatic positioning and alignment of the probe across the target while imaging. This allows to acquire coherent OCT images of skin areas beyond 10 cm<sup>2</sup>. }, keywords = {Optical Coherence Tomography, Fourier Domain Mode Locking, Robotically Assisted Imaging Systems, Three-dimensional image acquisition, Large Area Scanning, Skin Imaging , OCT, FDML}, year = {2023}, doi = {10.1117/12.2652616}, URL = {https://doi.org/10.1117/12.2652616} } |
Sazgar
Burhan,
Nicolas
Detrez,
Katharina
Rewerts,
Madita
Göb,
Steffen
Buschschlüter,
Christian
Hagel,
Matteo M.
Bonsanto,
Dirk
Theisen-Kunde,
Robert
Huber, and
Ralf
Brinkmann,
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
DOI: | 10.1117/12.2652847 |
Bibtex: | @inproceedings{10.1117/12.2652847, author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Steffen Buschschl{\"u}ter and Christian Hagel and Matteo Mario Bonsanto M.D. and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann}, title = {{Phase analysis strategies for MHz OCE in the large displacement regime}}, volume = {12367}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {123670Q}, abstract = {In neurosurgical tumor operations on the central nervous system, intraoperative haptic information often assists for discrimination between healthy and diseased tissue. Thus, it can provide the neurosurgeon with additional intraoperative source of information during resection, next to the visual information by the light microscope, fluorescent dyes and neuronavigation. One approach to obtain elastic and viscoelastic tissue characteristics non-subjectively is phase-sensitive optical coherence elastography (OCE), which is based on the principle of optical coherence tomography (OCT). While phase-sensitive OCE offers significantly higher displacement sensitivity inside a sample than commonly used intensity-based correlation methods, it requires a reliable algorithm to recover the phase signal, which is mathematically restricted in the -π to π range. This problem of phase wrapping is especially critical for inter-frame phase analysis since the time intervals between two referenced voxels is long. Here, we demonstrate a one-dimensional unwrapping algorithm capable of removing up to 4π-ambiguities between two frames in the complex phase data obtained from a 3.2 MHz-OCT system. The high sampling rate allows us to resolve large sample displacements induced by a 200 ms air pulse and acquires pixel-precise detail information. The deformation behavior of the tissue can be monitored over the entire acquisition time, offering various subsequent mechanical analysis procedures. The reliability of the algorithm and imaging concept was initially evaluated using different brain tumor mimicking phantoms. Additionally, results from human ex vivo brain tumor samples are presented and correlated with histological findings supporting the robustness of the algorithm.}, keywords = {Optical Coherence Tomography, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, Phase-sensitive OCT, Phase Unwrapping, Brain tumor, Biomechanics}, year = {2023}, doi = {10.1117/12.2652847}, URL = {https://doi.org/10.1117/12.2652847} } |
2022
Caren
Jacobi,
Madita
Göb,
Robert
Huber,
Ralf. J.
Ludwig, and
Jennifer
Hundt,
620 Screening an inhibitor library for new drug candidates to promote wound healing, Journal of Investigative Dermatology , vol. 142, no. 12, Supplement, pp. S288, Nov. 2022.
620 Screening an inhibitor library for new drug candidates to promote wound healing, Journal of Investigative Dermatology , vol. 142, no. 12, Supplement, pp. S288, Nov. 2022.
DOI: | https://doi.org/10.1016/j.jid.2022.09.637 |
File: | S0022202X22025714 |
Bibtex: | @article{JACOBI2022S288, title = {620 Screening an inhibitor library for new drug candidates to promote wound healing}, journal = {Journal of Investigative Dermatology}, volume = {142}, number = {12, Supplement }, pages = {S288}, year = {2022}, note = {ESDR 2022 Meeting Abstract Supplement}, issn = {0022-202X}, doi = {https://doi.org/10.1016/j.jid.2022.09.637}, url = {https://www.sciencedirect.com/science/article/pii/S0022202X22025714}, author = {C. Jacobi and M. Göb and R. Huber and R.J. Ludwig and J.E. Hundt} } |
Madita
Göb,
Sazgar
Burhan,
Simon
Lotz, and
Robert
Huber,
Towards ultra-large area vascular contrast skin imaging using multi-MHz-OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032022. pp. 27 -- 31.
Towards ultra-large area vascular contrast skin imaging using multi-MHz-OCT, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032022. pp. 27 -- 31.
DOI: | 10.1117/12.2612171 |
Bibtex: | @inproceedings{10.1117/12.2612171, author = {Madita G{\"o}b and Sazgar Burhan and Simon Lotz and Robert Huber}, title = {{Towards ultra-large area vascular contrast skin imaging using multi-MHz-OCT}}, volume = {11948}, booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVI}, editor = {Joseph A. Izatt and James G. Fujimoto}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {1194807}, abstract = {We demonstrate ultra-large field of view OCT scanning using standard optics, a X-Y-galvanometer scanner and a synchronously driven motorized XYZ-positioning stage. The integration of a movable stage into our self-built 3.3 MHz- OCT system allows acquiring coherent ultra-large area images, fully leveraging the high speed potential of our system. For fast OCT-angiography, one galvanometer axis scanner is driven in a repetitive sawtooth pattern, fully synchronized to the movement of the linear stage, to obtain multiple measurements at each position. This technique requires exact synchronization, precise repositioning, and uniform movements with low tolerances to ensure a minimum revisitation error. We analyze error and performance of our setup and demonstrate angiographic imaging.}, keywords = {Optical Coherence Tomography, Fourier Domain Mode Locking, FDML, Optical Coherence Angiography, OCTA, Medical optics and biotechnology, Medical imaging, Three-dimensional image acquisition, Scanners, Microscopy}, year = {2022}, doi = {10.1117/12.2612171}, URL = {https://doi.org/10.1117/12.2612171} } |
Madita
Göb,
Tom
Pfeiffer,
Wolfgang
Draxinger,
Simon
Lotz,
Jan Philip
Kolb, and
Robert
Huber,
Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence, Biomed. Opt. Express , vol. 13, no. 2, pp. 713--727, 02 2022. OSA.
Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence, Biomed. Opt. Express , vol. 13, no. 2, pp. 713--727, 02 2022. OSA.
DOI: | 10.1364/BOE.448353 |
Bibtex: | @article{Gob:22, author = {Madita G\"{o}b and Tom Pfeiffer and Wolfgang Draxinger and Simon Lotz and Jan Philip Kolb and Robert Huber}, journal = {Biomed. Opt. Express}, keywords = {High speed imaging; Image processing; Image quality; In vivo imaging; Range imaging; Vertical cavity surface emitting lasers}, number = {2}, pages = {713--727}, publisher = {Optica Publishing Group}, title = {Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence}, volume = {13}, month = {Feb}, year = {2022}, url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-13-2-713}, doi = {10.1364/BOE.448353}, abstract = {We present continuous three-dimensional spectral zooming in live 4D-OCT using a home-built FDML based OCT system with 3.28 MHz A-scan rate. Improved coherence characteristics of the FDML laser allow for imaging ranges up to 10 cm. For the axial spectral zoom feature, we switch between high resolution and long imaging range by adjusting the sweep range of our laser. We present a new imaging setup allowing for synchronized adjustments of the imaging range and lateral field of view during live OCT imaging. For this, a novel inline recalibration algorithm was implemented that enables numerical k-linearization of the raw OCT fringes for every frame instead of every volume. This is realized by acquiring recalibration data within the dead time of the raster scan at the turning points of the fast axis scanner. We demonstrate in vivo OCT images of fingers and hands at different resolution modes and show real three-dimensional zooming during live 4D-OCT. A three-dimensional spectral zooming feature for live 4D-OCT is expected to be a useful tool for a wide range of biomedical, scientific and research applications, especially in OCT guided surgery.}, } |
2021
Madita
Göb,
Sazgar
Burhan,
Wolfgang
Draxinger,
Jan Philip
Kolb, and
Robert
Huber,
Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm2/sec, in European Conferences on Biomedical Optics 2021 (ECBO) , Optical Society of America, Dec.2021. pp. EW3C.4.
Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm2/sec, in European Conferences on Biomedical Optics 2021 (ECBO) , Optical Society of America, Dec.2021. pp. EW3C.4.
DOI: | 10.1117/12.2616054 |
Bibtex: | @inproceedings{Gob:21, author = {Madita G\"{o}b and Sazgar Burhan and Wolfgang Draxinger and Jan Philip Kolb and Robert Huber}, booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)}, journal = {European Conferences on Biomedical Optics 2021 (ECBO)}, keywords = {AG-Huber_OCT;Fourier domain mode locking; Image processing; Image quality; Optical coherence tomography; Temporal resolution; Three dimensional imaging}, pages = {EW3C.4}, publisher = {Optical Society of America}, title = {Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm$^2$/sec}, year = {2021}, url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-EW3C.4}, abstract = {We demonstrate a 3.3 MHz A-scan rate OCT for rapid scanning of large areas of human skin. The mosaicking performance and different OCT imaging modalities including intervolume speckle contrast are evaluated.}, } |
Simon
Lotz,
Christin
Grill,
Madita
Göb,
Wolfgang
Draxinger,
Jan Philip
Kolb, and
Robert
Huber,
Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision, Biomedical Optics Express , vol. 12(5), pp. 2604-2616, 03 2021.
Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision, Biomedical Optics Express , vol. 12(5), pp. 2604-2616, 03 2021.
DOI: | 10.1364/BOE.422898 |
Bibtex: | @article{Lotz2021, author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J.P. Kolb and R. Huber}, title = {Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision}, journal = {Biomedical Optics Express}, volume = {12(5)}, keywords={AG-Huber_FDML}, pages = {2604-2616}, url = {https://doi.org/10.1364/BOE.422898}, year = {2021}, type = {Journal Article} } |
Simon
Lotz,
Christin
Grill,
Madita
Göb,
Wolfgang
Draxinger,
Jan Philip
Kolb, and
Robert
Huber,
Characterization of the dynamics of an FDML laser during closed-loop cavity length control, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 2021. pp. 236 -- 241.
Characterization of the dynamics of an FDML laser during closed-loop cavity length control, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 2021. pp. 236 -- 241.
DOI: | 10.1117/12.2578514 |
Bibtex: | @inproceedings{LotzLASE2021, author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J. P. Kolb and R. Huber}, title = {{Characterization of the dynamics of an FDML laser during closed-loop cavity length control}}, volume = {11665}, booktitle = {Fiber Lasers XVIII: Technology and Systems}, editor = {Michalis N. Zervas}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {236 -- 241}, abstract = {In Fourier domain mode locked (FDML) lasers, extremely precise and stable matching of the filter tuning period and light circulation time in the cavity is essential for ultra-low noise operation. During the operation of FDML lasers, the ultra-low noise mode can be lost due to temperature drifts of the already temperature stabilized cavity resulting in increased intensity noise. Until now, the filter frequency is continuously regulated to match the changing light circulation time. However, this causes the filter frequency to constantly change by a few mHz and leads to synchronization issues in cases where a fixed filter frequency is desired. We present an actively cavity length controlled FDML laser and a robust and high precision feedback loop algorithm for maintaining ultra-low noise operation. Instead of adapting the filter frequency, the cavity length is adjusted by a motorized free space beam path to match the fixed filter frequency. The closed-loop system achieves a stability of ~0.18 mHz at a sweep repetition rate of ~418 kHz which corresponds to a ratio of 4×10<sup>-10</sup>. We investigate the coherence properties during the active cavity length adjustments and observe no noise increase compared to fixed cavity length. The cavity length control is fully functional and for the first time, offers the possibility to operate an FDML laser in sweet spot mode at a fixed frequency or phase locked to an external clock. This opens new possibilities for system integration of FDML lasers.}, keywords = {AG-Huber_FDML, FDML, Fourier domain mode locking, laser beating, tunable laser, optical coherence tomography, OCT}, year = {2021}, URL = {hhttps://doi.org/10.1117/12.2578514} } |
2020
Tom
Pfeiffer,
Madita
Göb,
Wolfgang
Draxinger,
Sebastian
Karpf,
Jan Philip
Kolb, and
Robert
Huber,
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
DOI: | 10.1364/BOE.402477 |
Bibtex: | @article{Pfeiffer:20, author = {T. Pfeiffer, M. G\"{o}b, W. Draxinger, S. Karpf, J.P. Kolb and R. Huber}, journal = {Biomed. Opt. Express}, keywords = {AG-Huber_OCT; High speed imaging; Image quality; Optical coherence tomography; Swept lasers; Swept sources; Systems design}, number = {11}, pages = {6799--6811}, publisher = {OSA}, title = {Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging}, volume = {11}, month = {Nov}, year = {2020}, doi = {10.1364/BOE.402477}, abstract = {In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to \&\#x223C;100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121\&\#x00A0;dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.}, } |
2019
Madita
Göb,
Tom
Pfeiffer, and
Robert
Huber,
Towards combined optical coherence tomography and multi-spectral imaging with MHz a-scan rates for endoscopy, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , aciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. 072019. pp. 110780Y.
Towards combined optical coherence tomography and multi-spectral imaging with MHz a-scan rates for endoscopy, in Optical Coherence Imaging Techniques and Imaging in Scattering Media III , aciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh, Eds. 072019. pp. 110780Y.
DOI: | 10.1117/12.2526796 |
Bibtex: | @inproceedings{10.1117/12.2526796, author = {Madita G{\"o}b and Tom Pfeiffer and Robert Huber}, title = {{Towards combined optical coherence tomography and multi-spectral imaging with MHz a-scan rates for endoscopy}}, volume = {11078}, booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media III}, editor = {Maciej Wojtkowski and Stephen A. Boppart and Wang-Yuhl Oh}, organization = {International Society for Optics and Photonics}, publisher = {SPIE}, pages = {110780Y}, abstract = {We demonstrate a preliminary setup of a combined MHz-OCT and RGB narrowband reflection microscope and investigate the performance of the new RGB branch and different display modes of colored OCT data sets.}, keywords = {MHz OCT, multi-spectral imaging, Optical Coherence Tomography, Fourier Domain Mode Locked , FDML, RGB, Color }, year = {2019}, doi = {10.1117/12.2526796}, URL = {https://doi.org/10.1117/12.2526796} } |