Wolfgang Draxinger

Photo of Wolfgang  Draxinger

Doktorand / PhD Student

AG Huber
Universität zu Lübeck
Institut für Biomedizinische Optik

Maria-Goeppert-Str. 1
23562 Lübeck
Gebäude MFC 1, Raum 2.24

Email: wolfgang.draxinger(at)uni-luebeck.de
Phone: +49 451 3101 3234
Fax: +49 451 3101 3233



2024

Berenice Schulte, Madita Göb, Awanish Pratap Singh, Simon Lotz, Wolfgang Draxinger, Mario Pieper, Maik Rahlves, Robert Huber, and Mark Ellrichmann,
High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy, Scientific Reports , vol. 14, no. 1, pp. 4672, 02 2024.
DOI:10.1038/s41598-024-55338-5
Bibtex: BibTeX
@article{RN5474,
   author = {Schulte, Berenice;Göb, Madita;Singh, Awanish Pratap;Lotz, Simon;Draxinger, Wolfgang;Heimke, Marvin;pieper, Mario;Heinze, Tillmann;Wedel, Thilo;Rahlves, Maik;Huber, Robert and Ellrichmann, Mark},
   title = {High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy},
   journal = {Scientific Reports},
   volume = {14},
   number = {1},
   pages = {4672},
   ISSN = {2045-2322},
   DOI = {10.1038/s41598-024-55338-5},
   url = {https://doi.org/10.1038/s41598-024-55338-5},
   year = {2024},
   type = {Journal Article}
}

2023

Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321P.
DOI:10.1117/12.2670907
Datei: 12.2670907
Bibtex: BibTeX
@inproceedings{10.1117/12.2670907,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126321P},
keywords = {Brain Tumor, OCT, Optical Coherence Tomography, Prior Network, Glioblastoma Multiforme, Neural Network, Classification},
year = {2023},
doi = {10.1117/12.2670907},
URL = {https://doi.org/10.1117/12.2670907}
}
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schuetz, Nicolas Detrez, Paul Strenge, Maximilian Rixius, Veit Danicke, Wolfgang Wieser, Jessica Kren, Patrick Kuppler, Sonja Spar-Hess, Matteo M. Bonsanto, Ralf Brinkmann, and Robert Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 082023. pp. 126270W.
DOI:10.1117/12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
abstract = {Microscope integrated realtime 4D MHz-OCT operating at high scanning densities are capable of capturing additional visual contrast resolving depth and tissue. Even within a plain C-scan en-face projection structures are recognizable, that are not visible in a white light camera image. With advanced post processing methods, such as absorbtion coefficient mapping, and morphological classifiers more information is extraced. Presentation to the user in an intuitive way poses practical challenges that go beyond the implementation of a mere overlay display. We present our microscope integrated high speed 4D OCT imaging system, its clinical study use for in-vivo brain tissue imaging, and user feedback on the presentation methods we developed.},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}
Simon Lotz, Madita Göb, Wolfgang Draxinger, Anneli Dick, and Robert Huber,
13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography, in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 072023. pp. 1.
DOI:10.1109/CLEO/Europe-EQEC57999.2023.10231419
Bibtex: BibTeX
@INPROCEEDINGS{10231419,
  author={Lotz, Simon and Göb, Madita and Draxinger, Wolfgang and Dick, Anneli and Huber, Robert},
  booktitle={2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={13.4 MHz FDML Laser for Intra-Surgical Optical Coherence Tomography}, 
  year={2023},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/CLEO/Europe-EQEC57999.2023.10231419}}
Patrick Kuppler, Paul Strenge, Birgit Lange, Sonja Spahr-Hess, Wolfgang Draxinger, Christian Hagel, Dirk Theisen-Kunde, Ralf Brinkmann, Robert Huber, Volker Tronnier, and Matteo Mario Bonsanto,
The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study, Frontiers in Oncology , vol. 13, 04 2023.
DOI:10.3389/fonc.2023.1151149
Datei: fonc.2023.1151149
Bibtex: BibTeX
Kuppler P, Strenge P, Lange B, Spahr-Hess S, Draxinger W, Hagel C, Theisen-Kunde D, Brinkmann R, Huber R, Tronnier V and Bonsanto MM (2023) The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study. Front. Oncol. 13:1151149. doi: 10.3389/fonc.2023.1151149
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schützeck, Nicolas Detrez, Paul Strenge, Veit Danicke, Jessica Kren, Patrick Kuppler, Sonja Spahr-Hess, Matteo Mario Bonsanto, Ralf Brinkmann, and Robert Huber,
High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time, in High-Speed Biomedical Imaging and Spectroscopy VIII , Kevin K. Tsia and Keisuke Goda, Eds. SPIE, 032023. pp. 123900D.
DOI:10.1117/12.2648505
Bibtex: BibTeX
@inproceedings{10.1117/12.2648505,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Sch{\"u}tzeck and Nicolas Detrez and Paul Strenge and Veit Danicke and Jessica Kren and Patrick Kuppler and Sonja Spahr-Hess and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
title = {{High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time}},
volume = {12390},
booktitle = {High-Speed Biomedical Imaging and Spectroscopy VIII},
editor = {Kevin K. Tsia and Keisuke Goda},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123900D},
abstract = {Neuro-surgery is challenged by the difficulties of determining brain tumor boundaries during excisions. Optical coherence tomography is investigated as an imaging modality for providing a viable contrast channel. Our MHz-OCT technology enables rapid volumetric imaging, suitable for surgical workflows. We present a surgical microscope integrated MHz-OCT imaging system, which is used for the collection of in-vivo images of human brains, with the purpose of being used in machine learning systems that shall be trained to identify and classify tumorous tissue.},
keywords = {optical coherence tomography, brain tumor, neurosurgery, machine learning, contrast augmentation, histology dataset, clinical study, in-vivo imaging},
year = {2023},
doi = {10.1117/12.2648505},
URL = {https://doi.org/10.1117/12.2648505}
}
Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 1236805.
DOI:10.1117/12.2649963
Bibtex: BibTeX
@inproceedings{10.1117/12.2649963,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography}},
volume = {12368},
booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI},
editor = {Caroline Boudoux and James W. Tunnell},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236805},
abstract = {The ill-defined tumor borders of glioblastoma multiforme pose a major challenge for the surgeon during tumor resection,  since the goal of the tumor resection is the complete removal, while saving as much healthy brain tissue as possible. In  recent years, optical coherence tomography (OCT) was successfully used to classify white matter from tumor infiltrated  white matter by several research groups. Motivated by these results, a dataset was created, which consisted of sets of  corresponding ex vivo OCT images, which were acquired by two OCT-systems with different properties (e.g. wavelength  and resolution). Each image was annotated with semantic labels. The labels differentiate between white and gray matter  and three different stages of tumor infiltration. The data from both systems not only allowed a comparison of the ability of  a system to identify the different tissue types present during the tumor resection, but also enable a multimodal tissue  analysis evaluating corresponding OCT images of the two systems simultaneously. A convolutional neural network with  dirichlet prior was trained, which allowed to capture the uncertainty of a prediction. The approach increased the sensitivity  of identifying tumor infiltration from 58 % to 78 % for data with a low prediction uncertainty compared to a previous  monomodal approach. },
keywords = {optical coherence tomography, oct, brain, classification, tumor, dual wavelength, glioblastoma multiforme, tissue analysis},
year = {2023},
doi = {10.1117/12.2649963},
URL = {https://doi.org/10.1117/12.2649963}
}
Wolfgang Draxinger, Dirk Theisen-Kunde, Lion Schuetz, Nicolas Detrez, Paul Strenge, Maximilian Rixius, Veit Danicke, Wolfgang Wieser, Jessica Kren, Patrick Kuppler, Sonja Spar-Hess, Matteo Mario Bonsanto M.D., Ralf Brinkmann, and Robert Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270W.
DOI:10.1117/12.2670953
Datei: 12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}

2022

Paul Strenge, Birgit Lange, Wolfgang Draxinger, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, Christian Hagel, Sonja Spahr-Hess, Matteo M. Bonsanto, Heinz Handels, Ralf Brinkmann, and Robert Huber,
Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology, Frontiers in Oncology , 08 2022.
DOI:10.3389/fonc.2022.896060
Bibtex: BibTeX
@article{Strenge-2022,
   author = {Strenge, P.;Lange, B.;Grill,C.;Danicke,V.;Theisen-Kunde, D.;Hagel, C.;Spahr-Hess, S.;;Bonsanto, Matteo M.;Handels, H.; and Huber, R.;Brinkmann, R.},
   title = {Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology},
   journal = {Frontiers in Oncology},
Keywords = {AG-Huber_FDML, AG-Huber_OCT, brain, tumor, glioblastoma multiforme, OCT, neural network, attenuation (absorption)
coefficient, optical coherence tomography},
   DOI = {https://doi.org/10.3389/fonc.2022.896060},
   url = {https://www.frontiersin.org/articles/10.3389/fonc.2022.896060/full},
   year = {2022},
   type = {Journal Article}
}
Christin Grill, Torben Blömker, Mark Schmidt, Dominic Kastner, Tom Pfeiffer, Jan Philip Kolb, Wolfgang Draxinger, Sebastian Karpf, Christian Jirauschek, and Robert Huber,
Towards phase-stabilized Fourier domain mode-locked frequency combs, Communications Physics , vol. 5, no. 1, 08 2022. Springer Science and Business Media LLC.
DOI:10.1038/s42005-022-00960-w
Bibtex: BibTeX
@article{Grill2022,
  doi = {10.1038/s42005-022-00960-w},
  year = {2022},
  publisher = {Springer Science and Business Media {LLC}},
  volume = {{5}},
  number = {{1}},
  author = {C. Grill, T. Bl\"{o}mker, M. Schmidt, D. Kastner, T. Pfeiffer, J.P. Kolb, W. Draxinger, S. Karpf, C. Jirauschek and R. Huber},
  title = {Towards phase-stabilized Fourier domain mode-locked frequency combs},
  journal = {{Communications Physics}},
keywords={AG-Huber_FDML, FDML, Fourier domain mode locking, phase, frequency comb, coherence, beating}
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Christian Hagel, Sonja Spahr-Hess, Matteo M. Bonsanto, Robert Huber, Heinz Handels, and Ralf Brinkmann,
Registration of histological brain images onto optical coherence tomography images based on shape information, Physics in Medicine & Biology , 06 2022.
DOI:10.1088/1361-6560/ac6d9d
Bibtex: BibTeX
@article{Strenge2022,
   author = {Strenge, P;Lange, B;Grill, C;Draxinger, W;Danicke, V;Theisen-Kunde, D;Hagel, C;Spahr-Hess, S;Bonsanto, Matteo M.;Huber, R;Handels, H and Brinkmann, R},
   title = {Registration of histological brain images onto optical coherence tomography images based on shape information},
keywords = {brain, glioblastoma multiforme, shape, OCT, optical coherence tomography, AG-Huber_OCT,},
   journal = {Physics in Medicine & Biology},
   ISSN = {0031-9155},
   url = {http://iopscience.iop.org/article/10.1088/1361-6560/ac6d9d},
   year = {2022},
   type = {Journal Article}
}
Madita Göb, Tom Pfeiffer, Wolfgang Draxinger, Simon Lotz, Jan Philip Kolb, and Robert Huber,
Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence, Biomed. Opt. Express , vol. 13, no. 2, pp. 713--727, 02 2022. OSA.
DOI:10.1364/BOE.448353
Bibtex: BibTeX
@article{Gob:22,
author = {Madita G\"{o}b and Tom Pfeiffer and Wolfgang Draxinger and Simon Lotz and Jan Philip Kolb and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {High speed imaging; Image processing; Image quality; In vivo imaging; Range imaging; Vertical cavity surface emitting lasers},
number = {2},
pages = {713--727},
publisher = {Optica Publishing Group},
title = {Continuous spectral zooming for in vivo live 4D-OCT with MHz A-scan rates and long coherence},
volume = {13},
month = {Feb},
year = {2022},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-13-2-713},
doi = {10.1364/BOE.448353},
abstract = {We present continuous three-dimensional spectral zooming in live 4D-OCT using a home-built FDML based OCT system with 3.28 MHz A-scan rate. Improved coherence characteristics of the FDML laser allow for imaging ranges up to 10 cm. For the axial spectral zoom feature, we switch between high resolution and long imaging range by adjusting the sweep range of our laser. We present a new imaging setup allowing for synchronized adjustments of the imaging range and lateral field of view during live OCT imaging. For this, a novel inline recalibration algorithm was implemented that enables numerical k-linearization of the raw OCT fringes for every frame instead of every volume. This is realized by acquiring recalibration data within the dead time of the raster scan at the turning points of the fast axis scanner. We demonstrate in vivo OCT images of fingers and hands at different resolution modes and show real three-dimensional zooming during live 4D-OCT. A three-dimensional spectral zooming feature for live 4D-OCT is expected to be a useful tool for a wide range of biomedical, scientific and research applications, especially in OCT guided surgery.},
}

2021

Madita Göb, Sazgar Burhan, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm2/sec, in European Conferences on Biomedical Optics 2021 (ECBO) , Optical Society of America, Dez.2021. pp. EW3C.4.
DOI:10.1117/12.2616054
Bibtex: BibTeX
@inproceedings{Gob:21,
author = {Madita G\"{o}b and Sazgar Burhan and Wolfgang Draxinger and Jan Philip Kolb and Robert Huber},
booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT;Fourier domain mode locking; Image processing; Image quality; Optical coherence tomography; Temporal resolution; Three dimensional imaging},
pages = {EW3C.4},
publisher = {Optical Society of America},
title = {Towards densely sampled ultra-large area multi-MHz-OCT for in vivo skin measurements beyond 1 cm$^2$/sec},
year = {2021},
url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-EW3C.4},
abstract = {We demonstrate a 3.3 MHz A-scan rate OCT for rapid scanning of large areas of human skin. The mosaicking performance and different OCT imaging modalities including intervolume speckle contrast are evaluated.},
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Matteo M. Bonsanto, Christian Hagel, Robert Huber, and Ralf Brinkmann,
Comparison of two optical coherence tomography systems to identify human brain tumor, Optical Society of America, Dez.2021. pp. EW1C.7.
DOI:10.1117/12.2616044
Bibtex: BibTeX
@inproceedings{Strenge:21,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT; Absorption coefficient; Attenuation coefficient; Fourier domain mode locking; Multiple scattering; Optical coherence tomography; Spectral domain optical coherence tomography},
pages = {EW1C.7},
publisher = {Optical Society of America},
title = {Comparison of two optical coherence tomography systems to identify human brain tumor},
year = {2021},
url = {https://doi.org/10.1117/12.2616044},
abstract = {The identification of ex vivo brain tumor tissue was investigated with two different optical coherence tomography systems exploiting two optical parameters. The optical parameters were calculated from semantically labelled OCT B-scans.},
}
Christin Grill, Simon Lotz, Torben Blömker, Mark Schmidt, Wolfgang Draxinger, Jan Philip Kolb, Christian Jirauschek, and Robert Huber,
Superposition of two independent FDML lasers, in 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) , 062021. pp. 1-1.
DOI:10.1109/CLEO/Europe-EQEC52157.2021.9542126
Bibtex: BibTeX
@INPROCEEDINGS{9542126,
  author={Grill, Christin and Lotz, Simon and Blömker, Torben and Schmidt, Mark and Draxinger, Wolfgang and Kolb, Jan Philip and Jirauschek, Christian and Huber, Robert},
  booktitle={2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)}, 
  title={Superposition of two independent FDML lasers}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  abstract={Fourier domain mode locking (FDML) is a laser operating regime, which was developed in 2005 [1] . The output of this laser is a train of optical wavelength sweeps, equivalent to extremely chirped pulses with an optical bandwidth of up to 25 THz and frequency tuning rates of >10 19 Hz/s. This laser type was developed for optical coherence tomography [2] , but found recently more and more applications like LiDAR [3] , Raman microscopy [4] or two-photon microscopy [5] . The laser’s coherence properties are relevant for a better understanding of the FDML laser itself and its applications. Because of the wide sweep range and high tuning rate, the laser linewidth cannot be measured with an RF spectrometer. Superposition with a narrowband continuous wave laser only yields phase information for small fractions of the sweep [6] . However, beat signal measurements between two independent FDML lasers with equal sweep range and direction can give information about the complete sweep.},
  keywords={},
  doi={10.1109/CLEO/Europe-EQEC52157.2021.9542126},
  ISSN={},
  month={June}
}
Christin Grill, Torben Blömker, Mark Schmidt, Dominic Kastner, Tom Pfeiffer, Jan Philip Kolb, Wolfgang Draxinger, Sebastian Karpf, Christian Jirauschek, and Robert Huber,
A detailed analysis of the coherence and field properties of an FDML laser by time resolved beat signal measurements, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 032021. pp. 242 -- 247.
DOI:10.1117/12.2578293
Bibtex: BibTeX
@inproceedings{Grill2021,
author = {C. Grill, T. Blömker, M. Schmidt, D. Kastner, T. Pfeiffer, J.P. Kolb, W. Draxinger, S. Karpf, C. Jirauschek and R. Huber},
title = {{A detailed analysis of the coherence and field properties of an FDML laser by time resolved beat signal measurements}},
volume = {11665},
booktitle = {Fiber Lasers XVIII: Technology and Systems},
editor = {Michalis N. Zervas},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {242 -- 247},
keywords = {AG-Huber_FDML, Fourier domain mode locking, FDML laser, laser beating , tunable laser, optical coherence tomography, OCT},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578293}
}
Simon Lotz, Christin Grill, Madita Göb, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision, Biomedical Optics Express , vol. 12(5), pp. 2604-2616, 03 2021.
DOI:10.1364/BOE.422898
Bibtex: BibTeX
@article{Lotz2021,
   author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J.P. Kolb and R. Huber},
   title = {Cavity length control for Fourier domain mode locked (FDML) lasers with µm precision},
   journal = {Biomedical Optics Express},
   volume = {12(5)},
   keywords={AG-Huber_FDML},
   pages = {2604-2616},
   url = {https://doi.org/10.1364/BOE.422898},
   year = {2021},
   type = {Journal Article}
}
Paul Strenge, Birgit Lange, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Matteo M. Bonsanto, Christian Hagel, Robert Huber, and Ralf Brinkmann,
Characterization of brain tumor tissue with 1310 nm optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032021. pp. 74 -- 80.
DOI:10.1117/12.2578409
Bibtex: BibTeX
@inproceedings{Strenge2021A,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
title = {{Characterization of brain tumor tissue with 1310 nm optical coherence tomography}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {74 -- 80},
abstract = {The separation of tumorous brain tissue and healthy brain tissue is still a big challenge in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. On the basis of a recently created labelled OCT dataset of ex vivo glioblastoma multiforme tumor samples the detection of brain tumor tissue and the identification of zones with varying degrees of infiltration of tumor cells was investigated. The identification was based on the optical properties, which were extracted by an exponential fit function. The results showed that a separation of tumorous tissue and healthy white matter based on these optical properties is possible. A support vector machine was trained on the optical properties to separate tumor from healthy white matter tissue, which achieved a sensitivity of 91% and a specificity of 76% on an independent training dataset.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578409}
}
Paul Strenge, Birgit Lange, Christin Grill, Wolfgang Draxinger, Veit Danicke, Dirk Theisen-Kunde, Heinz Handels, Christian Hagel, Matteo M. Bonsanto, Robert Huber, and Ralf Brinkmann,
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , SPIE, 032021. pp. 66 -- 73.
DOI:10.1117/12.2578391
Bibtex: BibTeX
@inproceedings{Strenge2021,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, C. Hagel, M. Bonsanto, R. Huber and R. Brinkmann},
title = {{Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {66 -- 73},
abstract = {Optical coherence tomography (OCT) has the potential to become an additional imaging modality for surgical guidance in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. Interpretation of the images, however, is still a big challenge. A method to create a labeled OCT dataset based on ex vivo brain samples is introduced. The tissue samples were embedded in an agarose mold giving them a distinctive shape before images were acquired with two OCT systems (spectral domain (SD) and swept source (SS) OCT) and histological sections were created and segmented by a neuropathologist. Based on the given shape, the corresponding OCT images for each histological image can be determined. The transfer of the labels from the histological images onto the OCT images was done with a non-affine image registration approach based on the tissue shape. It was demonstrated that finding OCT images of a tissue sample corresponding to segmented histological images without any color or laser marking is possible. It was also shown that the set labels can be transferred onto OCT images. The accuracy of method is 26 ± 11 pixel, which translates to 192 ± 75 μm for the SS-OCT and 94 ± 43 μm for the SD-OCT. The dataset consists of several hundred labeled OCT images, which can be used to train a classification algorithm.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, image registration, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {https://doi.org/10.1117/12.2578391}
}
Matthias Strauch, Jan Philip Kolb, Wolfgang Draxinger, Ann-Kathrin Popp, Melanie Wacker, Nadine Merg, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Sectioning-free virtual H&E histology with fiber-based two-photon microscopy, in SPIE BiOS , SPIE, 032021.
DOI:10.1117/12.2578334
Bibtex: BibTeX
@inproceedings{RN5318,
   author = {Strauch, M;Kolb, J P;Draxinger, W;Popp, A-K;Wacker, M;Merg, N;Hundt, J;Karpf, S and Huber, R},
   title = {Sectioning-free virtual H&E histology with fiber-based two-photon microscopy},
   booktitle = {SPIE BiOS},
   publisher = {SPIE},
   volume = {11648},
Year = {2021},
   DOI = {https://doi.org/10.1117/12.2578334},
   url = {https://doi.org/10.1117/12.2578334},
   type = {Conference Proceedings}
}
Dirk Theisen-Kunde, Wolfgang Draxinger, Matteo M. Bonsanto, Paul Strenge, Nicolas Detrez, Robert Huber, and Ralf Brinkmann,
1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery, in European Conferences on Biomedical Optics 2021 (ECBO) , Optica Publishing Group, 2021. pp. ETu4A.2.
Weblink: https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2
Datei: abstract.cfm
Bibtex: BibTeX
@inproceedings{Theisen-Kunde:21,
author = {D. Theisen-Kunde and W. Draxinger and M. M. Bonsanto and Paul Strenge and Nicolas Detrez and R. Huber and R. Brinkmann},
booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {Clinical applications; Fourier domain mode locking; Optical coherence tomography; Optical fibers; Three dimensional reconstruction; White light},
pages = {ETu4A.2},
publisher = {Optica Publishing Group},
title = {1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery},
year = {2021},
url = {https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2},
doi = {10.1364/ECBO.2021.ETu4A.2},
abstract = {A 1.6 MHz Fourier-domain mode-locked (FDML) optical coherence tomography (OCT) was adapted to an OR-Microscope for clinical application in neurosurgery. 3D-volume scans at video rate are envisaged with approximately 50{\textmu}m lateral and 20{\textmu}m axial resolution.},
}
Simon Lotz, Christin Grill, Madita Göb, Wolfgang Draxinger, Jan Philip Kolb, and Robert Huber,
Characterization of the dynamics of an FDML laser during closed-loop cavity length control, in Fiber Lasers XVIII: Technology and Systems , Michalis N. Zervas, Eds. SPIE, 2021. pp. 236 -- 241.
DOI:10.1117/12.2578514
Bibtex: BibTeX
@inproceedings{LotzLASE2021,
author = {S. Lotz, C. Grill, M. Göb, W. Draxinger, J. P. Kolb and R. Huber},
title = {{Characterization of the dynamics of an FDML laser during closed-loop cavity length control}},
volume = {11665},
booktitle = {Fiber Lasers XVIII: Technology and Systems},
editor = {Michalis N. Zervas},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {236 -- 241},
abstract = {In Fourier domain mode locked (FDML) lasers, extremely precise and stable matching of the filter tuning period and light circulation time in the cavity is essential for ultra-low noise operation. During the operation of FDML lasers, the ultra-low noise mode can be lost due to temperature drifts of the already temperature stabilized cavity resulting in increased intensity noise. Until now, the filter frequency is continuously regulated to match the changing light circulation time. However, this causes the filter frequency to constantly change by a few mHz and leads to synchronization issues in cases where a fixed filter frequency is desired. We present an actively cavity length controlled FDML laser and a robust and high precision feedback loop algorithm for maintaining ultra-low noise operation. Instead of adapting the filter frequency, the cavity length is adjusted by a motorized free space beam path to match the fixed filter frequency. The closed-loop system achieves a stability of ~0.18 mHz at a sweep repetition rate of ~418 kHz which corresponds to a ratio of 4×10<sup>-10</sup>. We investigate the coherence properties during the active cavity length adjustments and observe no noise increase compared to fixed cavity length. The cavity length control is fully functional and for the first time, offers the possibility to operate an FDML laser in sweet spot mode at a fixed frequency or phase locked to an external clock. This opens new possibilities for system integration of FDML lasers.},
keywords = {AG-Huber_FDML, FDML, Fourier domain mode locking, laser beating, tunable laser, optical coherence tomography, OCT},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578514}
}

2020

Tom Pfeiffer, Madita Göb, Wolfgang Draxinger, Sebastian Karpf, Jan Philip Kolb, and Robert Huber,
Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging, Biomed. Opt. Express , vol. 11, no. 11, pp. 6799--6811, Nov. 2020. OSA.
DOI:10.1364/BOE.402477
Bibtex: BibTeX
@article{Pfeiffer:20,
author = {T. Pfeiffer, M. G\"{o}b, W. Draxinger, S. Karpf, J.P. Kolb and R. Huber},
journal = {Biomed. Opt. Express},
keywords = {AG-Huber_OCT; High speed imaging; Image quality; Optical coherence tomography; Swept lasers; Swept sources; Systems design},
number = {11},
pages = {6799--6811},
publisher = {OSA},
title = {Flexible A-scan rate MHz-OCT: efficient computational downscaling by coherent averaging},
volume = {11},
month = {Nov},
year = {2020},
doi = {10.1364/BOE.402477},
abstract = {In order to realize adjustable A-scan rates of fast optical coherence tomography (OCT) systems, we investigate averaging of OCT image data acquired with a MHz-OCT system based on a Fourier Domain Mode Locked (FDML) laser. Increased system sensitivity and image quality can be achieved with the same system at the cost of lower imaging speed. Effectively, the A-scan rate can be reduced in software by a freely selectable factor. We demonstrate a detailed technical layout of the strategies necessary to achieve efficient coherent averaging. Since there are many new challenges specific to coherent averaging in swept source MHz-OCT, we analyze them point by point and describe the appropriate solutions. We prove that coherent averaging is possible at MHz OCT-speed without special interferometer designs or digital phase stabilization. We find, that in our system up to \&\#x223C;100x coherent averaging is possible while achieving a sensitivity increase close to the ideal values. This corresponds to a speed reduction from 3.3 MHz to 33 kHz and a sensitivity gain of 20 dB. We show an imaging comparison between coherent and magnitude averaging of a human finger knuckle joint in vivo with 121\&\#x00A0;dB sensitivity for the coherent case. Further, the benefits of computational downscaling in low sensitivity MHz-OCT systems are analyzed.},
}
Matthias Strauch, Jan Philip Kolb, Daniel Weng, Melanie Wacker, Wolfgang Draxinger, Nadine Merg, Jennifer Hundt, Sebastian Karpf, and Robert Huber,
Two-photon microscopy for sectioning-free virtual H&E imaging, in 104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie , 062020.
Weblink: https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf
Bibtex: BibTeX
@InProceedings{Strauch2020,
  author    = {M. Strauch, J.P. Kolb, D. Weng, M. Wacker, W. Draxinger, N. Merg, J. Hundt, S. Karpf and R. Huber},
  booktitle = {104. Jahrestagung der Deutschen Gesellschaft fuer Pathologie},
  title     = {Two-photon microscopy for sectioning-free virtual {H&E} imaging},
URL = {https://www.pathologie-dgp.de/media/Dgp/user_upload/Verhandlungsband_2020_final__kompr._.pdf},
  year      = {2020},
  keywords  = {AG-Huber_NL},
}
Christin Grill, Simon Lotz, Torben Blömker, Dominic Kastner, Tom Pfeiffer, Mark Schmidt, Wolfgang Draxinger, Christian Jirauschek, and Robert Huber,
Beating of two FDML lasers in real time, in Fiber Lasers XVII: Technology and Systems , Liang Dong, Eds. SPIE, 022020. pp. 132 -- 138.
DOI:10.1117/12.2545794
Bibtex: BibTeX
@inproceedings{Grill2020,
author = {C. {Grill}, S. {Lotz}, T. {Blömker}, D. {Kastner}, T. {Pfeiffer}, S. {Karpf}, M. {Schmidt}, W. {Draxinger}, C. 
 {Jirauschek} and R. {Huber}},
title = {{Beating of two FDML lasers in real time}},
volume = {11260},
booktitle = {Fiber Lasers XVII: Technology and Systems},
editor = {Liang Dong},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {132 -- 138},
keywords = {AG-Huber_FDML, FDML laser, fiber lasers, beat signal, OCT, Optical Coherence Tomography, Fourier domain mode locking},
year = {2020},
doi = {10.1117/12.2545794},

}