Publikationen

2024

J. Kren, P. Kuppler, S. Buschschlüter, N. Detrez, S. Burhan, R. Huber, R. Brinkmann, and M. Bonsanto,
Mechanical characteristics of glioblastoma and peritumoral tumor-free human brain tissue, Acta Neurochirurgica , vol. 166, no. 1, pp. 102, 02 2024.
DOI:10.1007/s00701-024-06009-x
Bibtex: BibTeX
@article{RN5472,
   author = {Kren, Jessica;Skambath, Isabelle;Kuppler, Patrick;Buschschlüter, Steffen;Detrez, Nicolas;Burhan, Sazgar;Huber, Robert;Brinkmann, Ralf and Bonsanto, Matteo Mario},
   title = {Mechanical characteristics of glioblastoma and peritumoral tumor-free human brain tissue},
   journal = {Acta Neurochirurgica},
   volume = {166},
   number = {1},
   pages = {102},
   ISSN = {0942-0940},
   DOI = {10.1007/s00701-024-06009-x},
   url = {https://doi.org/10.1007/s00701-024-06009-x},
   year = {2024},
   type = {Journal Article}
}
S. Sonntag, B. Klein, R. Brinkmann, S. Grisanti, and Y. Miura,
Fluorescence Lifetime Imaging Ophthalmoscopy of Mouse Models of Age-related Macular Degeneration, Translational Vision Science & Technology , vol. 13, pp. 24-24, 01 2024. https://doi.org/10.1167/tvst.13.1.24 .
DOI:10.1167/tvst.13.1.24
Weblink: https://doi.org/10.1167/tvst.13.1.24
Bibtex: BibTeX
@article{10.1167/tvst.13.1.24,
    author = {Sonntag, Svenja Rebecca and Klein, Britta and Brinkmann, Ralf and Grisanti, Salvatore and Miura, Yoko},
    title = "{Fluorescence Lifetime Imaging Ophthalmoscopy of Mouse Models of Age-related Macular Degeneration}",
    journal = {Translational Vision Science & Technology},
    volume = {13},
    number = {1},
    pages = {24-24},
    year = {2024},
    month = {01},
    abstract = "{   To investigate fluorescence lifetime of mouse models of age-related macular degeneration (AMD) by fluorescence lifetime imaging ophthalmoscopy (FLIO).    Two AMD mouse models, apolipoprotein E knockout (ApoE−/−) mice and NF-E2-related factor-2 knockout (Nrf2−/−) mice, and their wild-type mice underwent monthly ophthalmic examinations including FLIO from 3 months of age. After euthanasia at the age of 6 or 11 months, blood plasma was collected to determine total antioxidant capacity and eyes were enucleated for Oil red O (ORO) lipid staining of chorioretinal tissue.    In FLIO, the mean fluorescence lifetime (τm) of wild type shortened with age in both spectral channels. In short spectral channel, τm shortening was observed in both AMD models as well, but its rate was more pronounced in ApoE−/− mice and significantly different from the other strains as months of age progressed. In contrast, in long spectral channel, both model strains showed completely opposite trends, with τm becoming shorter in ApoE−/− and longer in Nrf2−/− mice than the others. Oil red O staining at Bruch's membrane was significantly stronger in ApoE−/− mice at 11 months than the other strains. Plasma total antioxidant capacity was highest in ApoE−/− mice at both 6 and 11 months.    The two AMD mouse models exhibited largely different fundus fluorescence lifetime, which might be related to the different systemic metabolic state. FLIO might be able to indicate different metabolic states of eyes at risk for AMD.    This animal study may provide new insights into the relationship between early AMD-associated metabolic changes and FLIO findings.  }",
    issn = {2164-2591},
    doi = {10.1167/tvst.13.1.24},
    url = {https://doi.org/10.1167/tvst.13.1.24},
    eprint = {https://arvojournals.org/arvo/content\_public/journal/tvst/938660/i2164-2591-13-1-24\_1706520239.75643.pdf},
}
S. Sonntag, M. Hamann, E. Seifert, S. Grisanti, R. Brinkmann, and Y. Miura,
Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium, Graefe's Archive for Clinical and Experimental Ophthalmology , 2024.
DOI:10.1007/s00417-024-06449-2
Datei: s00417-024-06449-2
Bibtex: BibTeX
@article{RN5480,
   author = {Sonntag, Svenja Rebecca;Hamann, Maximilian;Seifert, Eric;Grisanti, Salvatore;Brinkmann, Ralf and Miura, Yoko},
   title = {Detection sensitivity of fluorescence lifetime imaging ophthalmoscopy for laser-induced selective damage of retinal pigment epithelium},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   ISSN = {1435-702X},
   DOI = {10.1007/s00417-024-06449-2},
   url = {https://doi.org/10.1007/s00417-024-06449-2},
   year = {2024},
   type = {Journal Article}
}
S. Burhan, N. Detrez, K. Rewerts, P. Strenge, S. Buschschlüter, J. Kren, C. Hagel, M. Bonsanto, R. Brinkmann, and R. Huber,
Phase unwrapping for MHz optical coherence elastography and application to brain tumor tissue, Biomed. Opt. Express , vol. 15, no. 2, pp. 1038--1058, 2024. Optica Publishing Group.
DOI:10.1364/BOE.510020
Datei: abstract.cfm
S. Burhan, N. Detrez, K. Rewerts, P. Strenge, S. Buschschlüter, J. Kren, C. Hagel, M. Bonsanto, R. Brinkmann, and R. Huber,
Phase unwrapping for MHz optical coherence elastography and application to brain tumor tissue, Biomed. Opt. Express , vol. 15, no. 2, pp. 1038--1058, 2024. Optica Publishing Group.
DOI:10.1364/BOE.510020
Datei: abstract.cfm
Bibtex: BibTeX
@article{Burhan:24,
author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Paul Strenge and Steffen Buschschl\"{u}ter and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
journal = {Biomed. Opt. Express},
keywords = {High speed imaging; Imaging systems; In vivo imaging; Magnetic resonance imaging; Phase noise; Phase shift},
number = {2},
pages = {1038--1058},
publisher = {Optica Publishing Group},
title = {Phase unwrapping for MHz optical coherence elastography and application to brain tumor tissue},
volume = {15},
month = {Feb},
year = {2024},
url = {https://opg.optica.org/boe/abstract.cfm?URI=boe-15-2-1038},
doi = {10.1364/BOE.510020},
abstract = {During neuro-oncologic surgery, phase-sensitive optical coherence elastography (OCE) can be valuable for distinguishing between healthy and diseased tissue. However, the phase unwrapping process required to retrieve the original phase signal is a challenging and critical task. To address this issue, we demonstrate a one-dimensional unwrapping algorithm that recovers the phase signal from a 3.2\&\#x2005;MHz OCE system. With a processing time of approximately 0.11 s per frame on the GPU, multiple 2\&\#x03C0; wraps are detected and corrected. By utilizing this approach, exact and reproducible information on tissue deformation can be obtained with pixel accuracy over the entire acquisition time. Measurements of brain tumor-mimicking phantoms and human ex vivo brain tumor samples verified the algorithm\&\#x0027;s reliability. The tissue samples were subjected to a 200\&\#x2005;ms short air pulse. A correlation with histological findings confirmed the algorithm\&\#x0027;s dependability.},
}
A. Boyko, B. Lange, S. Eckert, F. Mayorov, and R. Brinkmann,
Signal Enhancement of a Differential Photoacoustic Cell by Connecting the Microphones via Capillaries, Sensors , vol. 24, no. 7, 2024.
DOI:10.3390/s24072105
Datei: 2105
Bibtex: BibTeX
@Article{s24072105,
AUTHOR = {Boyko, Andrey and Lange, Birgit and Eckert, Sebastian and Mayorov, Fedor and Brinkmann, Ralf},
TITLE = {Signal Enhancement of a Differential Photoacoustic Cell by Connecting the Microphones via Capillaries},
JOURNAL = {Sensors},
VOLUME = {24},
YEAR = {2024},
NUMBER = {7},
ARTICLE-NUMBER = {2105},
URL = {https://www.mdpi.com/1424-8220/24/7/2105},
ISSN = {1424-8220},
ABSTRACT = {Differential photoacoustic spectroscopy (DPAS) cells are usually excited on the first longitudinal ring mode, with a microphone situated in the middle of each of the two resonator tubes. However, it is known from other photoacoustic spectroscopy cell designs that connecting the microphones via a capillary can lead to signal enhancement. By means of finite element method (FEM) simulations, we compared such a photoacoustic spectroscopy (PAS) cell with a capillary to a DPAS cell with a capillary attached to each of the two resonators and showed that the behavior of both systems is qualitatively the same: In both the PAS and the DPAS cell, in-phase and anti-phase oscillations of the coupled system (resonator–capillary) can be excited. In the DPAS cell, capillaries of suitable length also increase the pressure signal at the microphones according to the FEM simulations. For different capillary diameters (1.2 mm/1.7 mm/2.2 mm), the respective optimal capillary length (36–37.5 mm) and signal amplification was determined (94%, 70%, 53%). According to the results of these FEM simulations, a significant increase in sensitivity can, therefore, also be achieved in DPAS cells by expanding them with thin tubes leading to the microphones.},
DOI = {10.3390/s24072105}
}

2023

W. Draxinger, D. Theisen-Kunde, L. Schuetz, N. Detrez, P. Strenge, M. Rixius, V. Danicke, W. Wieser, J. Kren, P. Kuppler, S. Spar-Hess, M. Bonsanto, R. Brinkmann, and R. Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 082023. pp. 126270W.
DOI:10.1117/12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
abstract = {Microscope integrated realtime 4D MHz-OCT operating at high scanning densities are capable of capturing additional visual contrast resolving depth and tissue. Even within a plain C-scan en-face projection structures are recognizable, that are not visible in a white light camera image. With advanced post processing methods, such as absorbtion coefficient mapping, and morphological classifiers more information is extraced. Presentation to the user in an intuitive way poses practical challenges that go beyond the implementation of a mere overlay display. We present our microscope integrated high speed 4D OCT imaging system, its clinical study use for in-vivo brain tissue imaging, and user feedback on the presentation methods we developed.},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}
P. Strenge, B. Lange, W. Draxinger, C. Hagel, C. Grill, V. Danicke, D. Theisen-Kunde, S. Spahr-Hess, M. Bonsanto, R. Huber, H. Handels, and R. Brinkmann,
Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 126321P.
DOI:10.1117/12.2670907
Datei: 12.2670907
Bibtex: BibTeX
@inproceedings{10.1117/12.2670907,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126321P},
keywords = {Brain Tumor, OCT, Optical Coherence Tomography, Prior Network, Glioblastoma Multiforme, Neural Network, Classification},
year = {2023},
doi = {10.1117/12.2670907},
URL = {https://doi.org/10.1117/12.2670907}
}
S. Burhan, N. Detrez, M. Göb, M. Bonsanto, R. Brinkmann, and R. Huber,
Advanced FFT-based contrast approach for MHz optical coherence elastography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 082023. pp. 1263215.
DOI:10.1117/12.2670957
Bibtex: BibTeX
@inproceedings{10.1117/12.2670957,
author = {Sazgar Burhan and Nicolas Detrez and Madita G{\"o}b and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
title = {{Advanced FFT-based contrast approach for MHz optical coherence elastography}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1263215},
abstract = {Optical coherence elastography represents mechanical characteristics of biological tissue in so-called mechanical contrast maps. In addition to the standard intensity image, the contrast map illustrates numerous mechanical tissue features that would otherwise be undetectable. This is of great interest as abnormal physiological changes influence the mechanical behavior of the tissue. We demonstrate an advanced mechanical contrast approach based on the phase signal of our 3.2 MHz optical coherence tomography system. The robustness and performance of this contrast approach is evaluated and discussed based on preliminary results. },
keywords = {Optical Coherence Tomography, OCT, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, OCE, Phase-sensitive OCT, Biomechanics},
year = {2023},
doi = {10.1117/12.2670957},
URL = {https://doi.org/10.1117/12.2670957}
}
A. Leichtle, Z. Penxova, T. Kempin, D. Leffers, M. Ahrens, P. König, R. Brinkmann, G. Hüttmann, K. Bruchhage, and H. Schulz-Hildebrandt,
Dynamic Microscopic Optical Coherence Tomography as a New Diagnostic Tool for Otitis Media, Photonics , vol. 10, no. 6, 06 2023.
DOI:10.3390/photonics10060685
Datei: 685
Bibtex: BibTeX
@Article{photonics10060685,
AUTHOR = {Leichtle, Anke and Penxova, Zuzana and Kempin, Thorge and Leffers, David and Ahrens, Martin and König, Peter and Brinkmann, Ralf and Hüttmann, Gereon and Bruchhage, Karl-Ludwig and Schulz-Hildebrandt, Hinnerk},
TITLE = {Dynamic Microscopic Optical Coherence Tomography as a New Diagnostic Tool for Otitis Media},
JOURNAL = {Photonics},
VOLUME = {10},
YEAR = {2023},
NUMBER = {6},
ARTICLE-NUMBER = {685},
URL = {https://www.mdpi.com/2304-6732/10/6/685},
ISSN = {2304-6732},
ABSTRACT = {Hypothesis: Otitis media (OM) can be successfully visualized and diagnosed by dynamic microscopic optical coherence tomography (dmOCT). Background: OM is one of the most common infectious diseases and, according to the WHO, one of the leading health problems with high mortality in developing countries. Despite intensive research, the only definitive treatment of therapy-refractory OM for decades has been the surgical removal of inflamed tissue. Thereby, the intra-operative diagnosis is limited to the surgeon’s visual impression. Supportive imaging modalities have been little explored and have not found their way into clinical application. Finding imaging techniques capable of identifying inflamed tissue intraoperatively, therefore, is of significant clinical relevance. Methods: This work investigated a modified version of optical coherence tomography with a microscopic resolution (mOCT) regarding its ability to differentiate between healthy and inflamed tissue. Despite its high resolution, the differentiation of single cells with mOCT is often impossible. A new form of mOCT termed dynamic mOCT (dmOCT) achieves cellular contrast using micro-movements within cells based on their metabolism. It was used in this study to establish correlative measurements with histology. Results: Using dmOCT, images with microscopic resolution were acquired on ex vivo tissue samples of chronic otitis media and cholesteatoma. Imaging with dmOCT allowed the visualization of specific and characteristic cellular and subcellular structures in the cross-sectional images, which can be identified only to a limited extent in native mOCT. Conclusion: We demonstrated for the first time a new marker-free visualization in otitis media based on intracellular motion using dmOCT.},
DOI = {10.3390/photonics10060685}
}
P. Kuppler, P. Strenge, B. Lange, S. Spahr-Hess, W. Draxinger, C. Hagel, D. Theisen-Kunde, R. Brinkmann, R. Huber, V. Tronnier, and M. Bonsanto,
The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study, Frontiers in Oncology , vol. 13, 04 2023.
DOI:10.3389/fonc.2023.1151149
Datei: fonc.2023.1151149
Bibtex: BibTeX
Kuppler P, Strenge P, Lange B, Spahr-Hess S, Draxinger W, Hagel C, Theisen-Kunde D, Brinkmann R, Huber R, Tronnier V and Bonsanto MM (2023) The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study. Front. Oncol. 13:1151149. doi: 10.3389/fonc.2023.1151149
A. Hutfilz, D. Theisen-Kunde, M. Bonsanto, and R. Brinkmann,
Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection, Lasers in Medical Science , vol. 38, pp. 94, 03 2023. https://doi.org/10.1007/s10103-023-03747-9 .
DOI:10.1007/s10103-023-03747-9
Weblink: https://doi.org/10.1007/s10103-023-03747-9
Bibtex: BibTeX
@article{RN5430,
   author = {Hutfilz, Alessa;Theisen-Kunde, Dirk;Bonsanto, Matteo Mario and Brinkmann, Ralf},
   title = {Pulsed thulium laser blood vessel haemostasis as an alternative to bipolar forceps during neurosurgical tumour resection},
   journal = {Lasers in Medical Science},
   volume = {38},
   number = {1},
   pages = {94},
   ISSN = {1435-604X},
   DOI = {10.1007/s10103-023-03747-9},
   url = {https://doi.org/10.1007/s10103-023-03747-9},
   year = {2023},
   type = {Journal Article}
}
W. Draxinger, D. Theisen-Kunde, L. Schützeck, N. Detrez, P. Strenge, V. Danicke, J. Kren, P. Kuppler, S. Spahr-Hess, M. Bonsanto, R. Brinkmann, and R. Huber,
High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time, in High-Speed Biomedical Imaging and Spectroscopy VIII , Kevin K. Tsia and Keisuke Goda, Eds. SPIE, 032023. pp. 123900D.
DOI:10.1117/12.2648505
Bibtex: BibTeX
@inproceedings{10.1117/12.2648505,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Sch{\"u}tzeck and Nicolas Detrez and Paul Strenge and Veit Danicke and Jessica Kren and Patrick Kuppler and Sonja Spahr-Hess and Matteo Mario Bonsanto and Ralf Brinkmann and Robert Huber},
title = {{High speed 4D in-vivo OCT imaging of the human brain: creating high density datasets for machine learning toward identification of malign tissue in real time}},
volume = {12390},
booktitle = {High-Speed Biomedical Imaging and Spectroscopy VIII},
editor = {Kevin K. Tsia and Keisuke Goda},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123900D},
abstract = {Neuro-surgery is challenged by the difficulties of determining brain tumor boundaries during excisions. Optical coherence tomography is investigated as an imaging modality for providing a viable contrast channel. Our MHz-OCT technology enables rapid volumetric imaging, suitable for surgical workflows. We present a surgical microscope integrated MHz-OCT imaging system, which is used for the collection of in-vivo images of human brains, with the purpose of being used in machine learning systems that shall be trained to identify and classify tumorous tissue.},
keywords = {optical coherence tomography, brain tumor, neurosurgery, machine learning, contrast augmentation, histology dataset, clinical study, in-vivo imaging},
year = {2023},
doi = {10.1117/12.2648505},
URL = {https://doi.org/10.1117/12.2648505}
}
M. Yamamoto, Y. Miura, K. Hirayama, A. Kyo, T. Kohno, D. Theisen-Kunde, R. Brinkmann, and S. Honda,
Comparative Treatment Study on Macular Edema Secondary to Branch Retinal Vein Occlusion by Intravitreal Ranibizumab with and without Selective Retina Therapy, Life , vol. 13, no. 3, pp. 769, 03 2023.
DOI:10.3390/life13030769
Datei: 769
Bibtex: BibTeX
@article{RN5362,
   author = {Yamamoto, Manabu;Miura, Yoko;Hirayama, Kumiko;Kyo, Akika;Kohno, Takeya;Theisen-Kunde, Dirk;Brinkmann, Ralf and Honda, Shigeru},
   title = {Comparative Treatment Study on Macular Edema Secondary to Branch Retinal Vein Occlusion by Intravitreal Ranibizumab with and without Selective Retina Therapy},
   journal = {Life},
   volume = {13},
   number = {3},
   pages = {769},
   ISSN = {2075-1729},
   DOI = {10.3390/life13030769},
   url = {https://www.mdpi.com/2075-1729/13/3/769},
   year = {2023},
   type = {Journal Article}
}
S. Burhan, N. Detrez, K. Rewerts, M. Göb, C. Hagel, M. Bonsanto, D. Theisen-Kunde, R. Huber, and R. Brinkmann,
Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 123680F.
DOI:10.1117/12.2648301
Bibtex: BibTeX
@inproceedings{10.1117/12.2648301,
author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Characterization of brain tumor tissue by time-resolved, phase-sensitive optical coherence elastography at 3.2 MHz line rate}},
volume = {12368},
booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI},
editor = {Caroline Boudoux and James W. Tunnell},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123680F},
abstract = {Optical coherence elastography (OCE) offers the possibility of obtaining the mechanical behavior of a tissue. When also  using a non-contact mechanical excitation, it mimics palpation without interobserver variability. One of the most frequently  used techniques is phase-sensitive OCE. Depending on the system, depth-resolved changes in the sub-µm to nm range can  be detected and visualized volumetrically. Such an approach is used in this work to investigate and detect transitions  between healthy and tumorous brain tissue as well as inhomogeneities in the tumor itself to assist the operating surgeon  during tumor resection in the future. We present time-resolved, phase-sensitive OCE measurements on various ex vivo brain tumor samples using an ultra-fast 3.2 MHz swept-source optical coherence tomography (SS-OCT) system with a frame rate of 2.45 kHz. 4 mm line scans are acquired which, in combination with the high imaging speed, allow monitoring and investigation of the sample's behavior in response to the mechanical load. Therefore, an air-jet system applies a 200 ms  short air pulse to the sample, whose non-contact property facilitates the possibility for future in vivo measurements. Since we can temporally resolve the response of the sample over the entire acquisition time, the mechanical properties are evaluated at different time points with depth resolution. This is done by unwrapping the phase data and performing subsequent assessment. Systematic ex vivo brain tumor measurements were conducted and visualized as distribution maps.  The study outcomes are supported by histological analyses and examined in detail.},
keywords = { Optical Coherence Tomography, Optical Coherence Elastography, Phase-sensitive OCT, Fourier Domain Mode Locking, Brain Tumor, Phase Unwrapping, Tissue Characterization, Biomechanics},
year = {2023},
doi = {10.1117/12.2648301},
URL = {https://doi.org/10.1117/12.2648301}
}
P. Strenge, B. Lange, W. Draxinger, C. Hagel, C. Grill, V. Danicke, D. Theisen-Kunde, S. Spahr-Hess, M. Bonsanto, R. Huber, H. Handels, and R. Brinkmann,
Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography, in Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI , Caroline Boudoux and James W. Tunnell, Eds. SPIE, 032023. pp. 1236805.
DOI:10.1117/12.2649963
Bibtex: BibTeX
@inproceedings{10.1117/12.2649963,
author = {Paul Strenge and Birgit Lange and Wolfgang Draxinger and Christian Hagel and Christin Grill and Veit Danicke and Dirk Theisen-Kunde and Sonja Spahr-Hess and Matteo M. Bonsanto and Robert Huber and Heinz Handels and Ralf Brinkmann},
title = {{Dual wavelength analysis and classification of brain tumor tissue with optical coherence tomography}},
volume = {12368},
booktitle = {Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI},
editor = {Caroline Boudoux and James W. Tunnell},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1236805},
abstract = {The ill-defined tumor borders of glioblastoma multiforme pose a major challenge for the surgeon during tumor resection,  since the goal of the tumor resection is the complete removal, while saving as much healthy brain tissue as possible. In  recent years, optical coherence tomography (OCT) was successfully used to classify white matter from tumor infiltrated  white matter by several research groups. Motivated by these results, a dataset was created, which consisted of sets of  corresponding ex vivo OCT images, which were acquired by two OCT-systems with different properties (e.g. wavelength  and resolution). Each image was annotated with semantic labels. The labels differentiate between white and gray matter  and three different stages of tumor infiltration. The data from both systems not only allowed a comparison of the ability of  a system to identify the different tissue types present during the tumor resection, but also enable a multimodal tissue  analysis evaluating corresponding OCT images of the two systems simultaneously. A convolutional neural network with  dirichlet prior was trained, which allowed to capture the uncertainty of a prediction. The approach increased the sensitivity  of identifying tumor infiltration from 58 % to 78 % for data with a low prediction uncertainty compared to a previous  monomodal approach. },
keywords = {optical coherence tomography, oct, brain, classification, tumor, dual wavelength, glioblastoma multiforme, tissue analysis},
year = {2023},
doi = {10.1117/12.2649963},
URL = {https://doi.org/10.1117/12.2649963}
}
D. Theisen-Kunde, C. Burchard, V. Danicke, J. Fleger, C. Kren, S. Wittmeier, J. Roider, and R. Brinkmann,
Real-time temperature-control for cw retinal laser therapy in a clinical study, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 1262723.
DOI:10.1117/12.2670839
Datei: 12.2670839
Bibtex: BibTeX
@inproceedings{10.1117/12.2670839,
author = {Dirk Theisen-Kunde and Claus von der Burchard and Veit Danicke and Jan-Eric Fleger and Christopher Kren and Sebastian Wittmeier and Johann Roider and Ralf Brinkmann},
title = {{Real-time temperature-control for cw retinal laser therapy in a clinical study}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1262723},
keywords = {retinal laser, real time temperature control, clinical study, CSCR},
year = {2023},
doi = {10.1117/12.2670839},
URL = {https://doi.org/10.1117/12.2670839}
}
S. Burhan, N. Detrez, K. Rewerts, M. Göb, S. Buschschlüter, C. Hagel, M. Bonsanto, D. Theisen-Kunde, R. Huber, and R. Brinkmann,
Phase analysis strategies for MHz OCE in the large displacement regime, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 2023. pp. 123670Q.
DOI:10.1117/12.2652847
Bibtex: BibTeX
@inproceedings{10.1117/12.2652847,
author = {Sazgar Burhan and Nicolas Detrez and Katharina Rewerts and Madita G{\"o}b and Steffen Buschschl{\"u}ter and Christian Hagel and Matteo Mario Bonsanto M.D. and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Phase analysis strategies for MHz OCE in the large displacement regime}},
volume = {12367},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {123670Q},
abstract = {In neurosurgical tumor operations on the central nervous system, intraoperative haptic information often assists for discrimination between healthy and diseased tissue. Thus, it can provide the neurosurgeon with additional intraoperative source of information during resection, next to the visual information by the light microscope, fluorescent dyes and neuronavigation. One approach to obtain elastic and viscoelastic tissue characteristics non-subjectively is phase-sensitive optical coherence elastography (OCE), which is based on the principle of optical coherence tomography (OCT). While phase-sensitive OCE offers significantly higher displacement sensitivity inside a sample than commonly used intensity-based correlation methods, it requires a reliable algorithm to recover the phase signal, which is mathematically restricted in the -π to π range. This problem of phase wrapping is especially critical for inter-frame phase analysis since the time intervals between two referenced voxels is long. Here, we demonstrate a one-dimensional unwrapping algorithm capable of removing up to 4π-ambiguities between two frames in the complex phase data obtained from a 3.2 MHz-OCT system. The high sampling rate allows us to resolve large sample displacements induced by a 200 ms air pulse and acquires pixel-precise detail information. The deformation behavior of the tissue can be monitored over the entire acquisition time, offering various subsequent mechanical analysis procedures. The reliability of the algorithm and imaging concept was initially evaluated using different brain tumor mimicking phantoms. Additionally, results from human ex vivo brain tumor samples are presented and correlated with histological findings supporting the robustness of the algorithm.},
keywords = {Optical Coherence Tomography, Megahertz OCT, Fourier Domain Mode Locking, Optical Coherence Elastography, Phase-sensitive OCT, Phase Unwrapping, Brain tumor, Biomechanics},
year = {2023},
doi = {10.1117/12.2652847},
URL = {https://doi.org/10.1117/12.2652847}
}
N. Detrez, S. Burhan, K. Rewerts, J. Kren, C. Hagel, M. Bonsanto, D. Theisen-Kunde, R. Huber, and R. Brinkmann,
Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data, in Optical Elastography and Tissue Biomechanics X , Kirill V. Larin and Giuliano Scarcelli and Frédérique Vanholsbeeck, Eds. SPIE, 2023. pp. 1238105.
DOI:10.1117/12.2649835
Datei: 12.2649835
Bibtex: BibTeX
@inproceedings{10.1117/12.2649835,
author = {Nicolas Detrez and Sazgar Burhan and Katharina Rewerts and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Air-Jet based optical coherence elastography: processing and mechanical interpretation of brain tumor data}},
volume = {12381},
booktitle = {Optical Elastography and Tissue Biomechanics X},
editor = {Kirill V. Larin and Giuliano Scarcelli and Fr{\'e}d{\'e}rique Vanholsbeeck},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {1238105},
keywords = {Optical Coherence Elastography, Air-Jet, Air-Puff, biomechanics, viscoelasticity, rheology, brain tissue, brain tumor},
year = {2023},
doi = {10.1117/12.2649835},
URL = {https://doi.org/10.1117/12.2649835}
}
C. Grill, J. Kuhl, M. Schlenz, and R. Brinkmann,
Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography, in Optical Coherence Imaging Techniques and Imaging in Scattering Media V , Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno, Eds. SPIE, 2023. pp. 126320J.
DOI:10.1117/12.2670874
Datei: 12.2670874
Bibtex: BibTeX
@inproceedings{10.1117/12.2670874,
author = {Christin Grill and Julie-Jacqueline Kuhl and Maximiliane Amelie Schlenz and Ralf Brinkmann},
title = {{Monitoring of fatigue damage in monolithic dental CAD/CAM crowns by optical coherence tomography}},
volume = {12632},
booktitle = {Optical Coherence Imaging Techniques and Imaging in Scattering Media V},
editor = {Benjamin J. Vakoc and Maciej Wojtkowski and Yoshiaki Yasuno},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126320J},
keywords = {Optical Coherence Tomography, OCT, Monolithic dental crowns, CAD/CAM materials, Microcracks, Non-destructive method, Fatigue damage, Dental materials},
year = {2023},
doi = {10.1117/12.2670874},
URL = {https://doi.org/10.1117/12.2670874}
}
W. Draxinger, D. Theisen-Kunde, L. Schuetz, N. Detrez, P. Strenge, M. Rixius, V. Danicke, W. Wieser, J. Kren, P. Kuppler, S. Spar-Hess, M. M.D., R. Brinkmann, and R. Huber,
Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126270W.
DOI:10.1117/12.2670953
Datei: 12.2670953
Bibtex: BibTeX
@inproceedings{10.1117/12.2670953,
author = {Wolfgang Draxinger and Dirk Theisen-Kunde and Lion Schuetz and Nicolas Detrez and Paul Strenge and Maximilian Rixius and Veit Danicke and Wolfgang Wieser and Jessica Kren and Patrick Kuppler and Sonja Spar-Hess and Matteo Mario Bonsanto M.D. and Ralf Brinkmann and Robert Huber},
title = {{Microscope integrated realtime high density 4D MHz-OCT in neurosurgery: a depth and tissue resolving visual contrast channel and the challenge of fused presentation}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126270W},
keywords = {optical coherence tomography, neurosurgery, tissue contrast, image fusion, surgical guidance, theranostics},
year = {2023},
doi = {10.1117/12.2670953},
URL = {https://doi.org/10.1117/12.2670953}
}
P. Enzian, B. Lange, Z. Penxova, A. Leichtle, Y. Miura, K. Bruchhage, and R. Brinkmann,
Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples, in Translational Biophotonics: Diagnostics and Therapeutics III , Zhiwei Huang and Lothar D. Lilge, Eds. SPIE, 2023. pp. 126271T.
DOI:10.1117/12.2670902
Datei: 12.2670902
Bibtex: BibTeX
@inproceedings{10.1117/12.2670902,
author = {Paula Enzian and Birgit Lange and Zuzana Penxov{\'a} and Anke Leichtle and Yoko Miura and Karl-Ludwig Bruchhage and Ralf Brinkmann},
title = {{Fluorescence lifetime imaging microscopy (FLIM) of human middle ear tissue samples}},
volume = {12627},
booktitle = {Translational Biophotonics: Diagnostics and Therapeutics III},
editor = {Zhiwei Huang and Lothar D. Lilge},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126271T},
keywords = {FLIM, autofluorescence, otitis media, cholesteatoma, middle ear, inflammation},
year = {2023},
doi = {10.1117/12.2670902},
URL = {https://doi.org/10.1117/12.2670902}
}
N. Detrez, S. Burhan, P. Strenge, J. Kren, C. Hagel, M. Bonsanto, D. Theisen-Kunde, R. Huber, and R. Brinkmann,
Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis, in Emerging Technologies for Cell and Tissue Characterization II , Seemantini K. Nadkarni and Giuliano Scarcelli, Eds. SPIE, 2023. pp. 126290M.
DOI:10.1117/12.2670944
Datei: 12.2670944
Bibtex: BibTeX
@inproceedings{10.1117/12.2670944,
author = {Nicolas Detrez and Sazgar Burhan and Paul Strenge and Jessica Kren and Christian Hagel and Matteo Mario Bonsanto and Dirk Theisen-Kunde and Robert Huber and Ralf Brinkmann},
title = {{Air-jet based optical coherence elastography of brain tumor tissue: stiffness evaluation by structural histological analysis}},
volume = {12629},
booktitle = {Emerging Technologies for Cell and Tissue Characterization II},
editor = {Seemantini K. Nadkarni and Giuliano Scarcelli},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {126290M},
keywords = {Optical Coherence Elastography, Air-Jet, Phase-sensitive OCT, Histology Structure Analysis, Color-Deconvolution, Structural Tensors, Brain tumor, Tissue Characterization},
year = {2023},
doi = {10.1117/12.2670944},
URL = {https://doi.org/10.1117/12.2670944}
}
D. Theisen-Kunde, J. Kren, A. Hutfilz, M. Bonsanto, and R. Brinkmann,
Clinical evaluation of thulium laser / ultrasonic aspirator combination instrument during neurosurgical tumour resection, 2023.
Weblink: https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34?SSO=1
Bibtex: BibTeX
@inproceedings{RN5454,
   author = {Theisen-Kunde, D;Kren, J;Hutfilz, A;Bonsanto, M and Brinkmann, R},
   title = {Clinical evaluation of thulium laser/ultrasonic aspirator combination instrument during neurosurgical tumour resection},
   booktitle = {ECBO},
   publisher = {SPIE},
   url = {https://spie.org/european-conference-on-biomedical-optics/presentation/Clinical-evaluation-of-thulium-laser-ultrasonic-aspirator-combination-instrument-during/12627-34},
   type = {Conference Proceedings}
}

2022

P. Strenge, B. Lange, W. Draxinger, C. Grill, V. Danicke, D. Theisen-Kunde, C. Hagel, S. Spahr-Hess, M. Bonsanto, H. Handels, R. Brinkmann, and R. Huber,
Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology, Frontiers in Oncology , 08 2022.
DOI:10.3389/fonc.2022.896060
Bibtex: BibTeX
@article{Strenge-2022,
   author = {Strenge, P.;Lange, B.;Grill,C.;Danicke,V.;Theisen-Kunde, D.;Hagel, C.;Spahr-Hess, S.;;Bonsanto, Matteo M.;Handels, H.; and Huber, R.;Brinkmann, R.},
   title = {Differentiation of different stages of brain tumor infiltration using optical coherence tomography: Comparison of two systems and histology},
   journal = {Frontiers in Oncology},
Keywords = {AG-Huber_FDML, AG-Huber_OCT, brain, tumor, glioblastoma multiforme, OCT, neural network, attenuation (absorption)
coefficient, optical coherence tomography},
   DOI = {https://doi.org/10.3389/fonc.2022.896060},
   url = {https://www.frontiersin.org/articles/10.3389/fonc.2022.896060/full},
   year = {2022},
   type = {Journal Article}
}
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, C. Hagel, S. Spahr-Hess, M. Bonsanto, R. Huber, H. Handels, and R. Brinkmann,
Registration of histological brain images onto optical coherence tomography images based on shape information, Physics in Medicine & Biology , 06 2022.
DOI:10.1088/1361-6560/ac6d9d
Bibtex: BibTeX
@article{Strenge2022,
   author = {Strenge, P;Lange, B;Grill, C;Draxinger, W;Danicke, V;Theisen-Kunde, D;Hagel, C;Spahr-Hess, S;Bonsanto, Matteo M.;Huber, R;Handels, H and Brinkmann, R},
   title = {Registration of histological brain images onto optical coherence tomography images based on shape information},
keywords = {brain, glioblastoma multiforme, shape, OCT, optical coherence tomography, AG-Huber_OCT,},
   journal = {Physics in Medicine & Biology},
   ISSN = {0031-9155},
   url = {http://iopscience.iop.org/article/10.1088/1361-6560/ac6d9d},
   year = {2022},
   type = {Journal Article}
}
K. Yashin, M. Bonsanto, K. Achkasova, A. Zolotova, A. Wael, E. Kiseleva, A. Moiseev, I. Medyanik, L. Kravets, R. Huber, R. Brinkmann, and N. Gladkova,
OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives, Diagnostics , vol. 12, no. 2, pp. 335, 01 2022.
DOI:10.3390/diagnostics12020335
Datei: 335
Bibtex: BibTeX
@article{Yashin-2022,
   author = {Yashin, K;Bonsanto, M M;Achkasova, K;Zolotova, A;Wael, Al-M;Kiseleva, E;Moiseev, A;Medyanik, I;Kravets, L;Huber, R;Brinkmann, R and Gladkova, N},
   title = {OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives},
   journal = {Diagnostics},
   volume = {12},
   number = {2},
   pages = {335},
   ISSN = {2075-4418},
keywords = {AG-Huber; optical coherence tomography; brain imaging; neurosurgical guidance; brain tumor; minimally invasive theranostics; intraoperative imaging},
   url = {https://www.mdpi.com/2075-4418/12/2/335},
   year = {2022},
   type = {Journal Article}
}
M. Schaller, V. Kleymann, M. Mordmüller, S. Christian, M. Wilson, R. Brinkmann, M. Müller, and K. Worthmann,
Model predictive control for retinal laser treatment at 1 kHz, at - Automatisierungstechnik , vol. 70(11), pp. 992-1002, 2022.
Datei: auto-2022-0030
Bibtex: BibTeX
@article{Schaller2022,
   author = {Schaller, M.;Kleyman, K.;Mordmüller, M.;Schmidt, C.;Wilson, M.;Brinkmann, R.;Müller, M.A. and Worthmann, K.},
   title = {Model predictive control for retinal laser treatment at 1 kHz},
   journal = {at - Automatisierungstechnik},
   volume = {70(11)},
   keywords = {model predictive control; real-time control;retinal photocoagulation},
   pages = {992-1002},
  
   url = {https://doi.org/10.1515/auto-2022-0030},
   year = {2022},
   type = {Journal Article}
}
Y. Miura, K. Inagaki, A. Hutfilz, E. Seifert, B. Schmarbeck, A. Murakami, K. Ohkoshi, and R. Brinkmann,
Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application, Life , vol. 12(9), pp. 1313, 2022.
DOI:https://doi.org/10.3390/life12091313
Datei: 1313
Bibtex: BibTeX
@article{Miura2022,
   author = {Miura, Y;Inagaki, K;Hutfilz, A;Seifert, E;Schmarbeck, B;Murakami, A;Ohkoshi, K and Brinkmann, R},
   title = {Temperature Increase and Damage Extent at Retinal Pigment Epithelium Compared between Continuous Wave and Micropulse Laser Application},
   journal = {Life},
   volume = {12(9)},
  
   pages = {1313},
   ISSN = {2075-1729},
   url = {https://www.mdpi.com/2075-1729/12/9/1313},
   year = {2022},
   type = {Journal Article}
}
B. Lange, T. Ozimek, J. Wießmeyer, M. Kramer, A. Merseburger, and R. Brinkmann,
Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy, Biomedical Physics & Engineering Express , vol. 8, no. 5, pp. 055023, 2022.
DOI:10.1088/2057-1976/ac82c7
Bibtex: BibTeX
@article{Lange2022,
   author = {Lange, B;Ozimek, T;Wießmeyer, J R;Kramer, M W.;Merseburger, A S. and Brinkmann, R},
   title = {Theoretical and experimental evaluation of the distance dependence of fiber-based fluorescence and reflection measurements for laser lithotripsy},
   journal = {Biomedical Physics & Engineering Express},
   volume = {8},
   number = {5},
abstract = {Objectives. In laser lithotripsy, a green aiming beam overlying the infrared (IR) treatment radiation gives rise to reflection and fluorescence signals that can be measured via the treatment fiber. While stone autofluorescence is used for target detection, the condition of the fiber can be assessed based on its Fresnel reflection. For good applicability, fluorescence detection of stones should work even when the stone and fiber are not in direct contact. Fiber breakage detection, on the other hand, can be falsified if surfaces located in front of the fiber reflect light from the aiming laser back into it. For both applications, therefore, a fundamental investigation of the dependence of the signal amplitude on the distance between fiber and surface is important. Methods. Calculations of the signal drop of fluorescence or diffuse and specular reflection with increasing fiber distance were performed using ray tracing based on a simple geometric model for different fiber core diameters. Reflection signals from a mirror, diffuse reflector, human calculi, and porcine renal tissue placed in water were measured at varying distances (0–5 mm). For human calculi, fluorescence signals were recorded simultaneously. Results. The calculations showed a linear signal decrease down to ∼60% of the maximum signal (fiber in contact). The distance z at which the signal drops to for example 50% depends linearly on the diameter of the fiber core. For fibers used in lithotripsy and positioned in water, z50% ranges from 0.55 mm (200 μm core diameter) to 2.73 mm, (1 mm core diameter). The calculations were in good agreement with the experimental results. Conclusions. The autofluorescence signals of stones can be measured in non-contact mode. Evaluating the Fresnel signal of the end face of the fiber to detect breakage is possible unless the fiber is situated less than some millimeters to reflecting surfaces.},
keywords = {urolithiasis, laser lithotripsy, fluorescence, reflectance},
   pages = {055023},
   ISSN = {2057-1976},
   DOI = {10.1088/2057-1976/ac82c7},
   
   year = {2022},
   type = {Journal Article}
}
M. Schaller, M. Wilson, V. Kleymann, M. Mordmüller, R. Brinkmann, M. Müller, and K. Worthmann,
Parameter estimation and model reduction for model predictive control in retinal laser treatment, Control Engineering Practice , vol. 128, pp. 105320, 2022.
DOI:https://doi.org/10.1016/j.conengprac.2022.105320
Bibtex: BibTeX
@article{Schaller2022,
   author = {Schaller, M;Wilson, M;Kleyman, V;Mordmüller, M;Brinkmann, R;Müller, M. A. and Worthmann, K},
   title = {Parameter estimation and model reduction for model predictive control in retinal laser treatment},
   journal = {Control Engineering Practice},
   volume = {128},
   pages = {105320},
   ISSN = {0967-0661},
   DOI = {https://doi.org/10.1016/j.conengprac.2022.105320},

   year = {2022},
   type = {Journal Article}
}

2021

P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber, and R. Brinkmann,
Comparison of two optical coherence tomography systems to identify human brain tumor, Optical Society of America, Dez.2021. pp. EW1C.7.
DOI:10.1117/12.2616044
Bibtex: BibTeX
@inproceedings{Strenge:21,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT; Absorption coefficient; Attenuation coefficient; Fourier domain mode locking; Multiple scattering; Optical coherence tomography; Spectral domain optical coherence tomography},
pages = {EW1C.7},
publisher = {Optical Society of America},
title = {Comparison of two optical coherence tomography systems to identify human brain tumor},
year = {2021},
url = {https://doi.org/10.1117/12.2616044},
abstract = {The identification of ex vivo brain tumor tissue was investigated with two different optical coherence tomography systems exploiting two optical parameters. The optical parameters were calculated from semantically labelled OCT B-scans.},
}
N. Detrez, K. Rewerts, M. Matthiae, S. Buschschlüter, M. Bonsanto, D. Theisen-Kunde, and R. Brinkmann,
Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography, in ECBO , Optical Society of America, Dez.2021. pp. EW4A.10.
Weblink: https://opg.optica.org/abstract.cfm?uri=ECBO-2021-EW4A.10
Bibtex: BibTeX
@inproceedings{Detrez:21,
author = {N. Detrez, K. Rewerts, M. Matthiae, S. Buschschlueter, M.M. Bonsanto, D. Theisen-Kunde and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT},
pages = {EW4A.10},
publisher = {Optical Society of America},
title = {Flow Controlled Air Puff Generator Towards In Situ Brain Tumor Detection Based on MHz Optical Coherence Elastography},
year = {2021},
url = {https://doi.org/10.1117/12.2615022},
abstract = {A precision air puff excitation system for MHz Optical Coherence Elastography in neurosurgery was developed. It enables non-contact soft-tissue excitation down to {\textmu}N, with direct, noncontact force determination via gas flow measurement.},
}
K. Rewerts, M. Matthiae, N. Detrez, S. Buschschlüter, M. Bonsanto, R. Huber, and R. Brinkmann,
Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation, in ECBO , Optical Society of America, Dez.2021. pp. ETh3A.3.
Weblink: https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETh3A.3
Bibtex: BibTeX
@inproceedings{Rewerts2021ECBO,
author = {K. Rewerts, M. Matthiae, N. Detrez, S. Buschschlueter, M.M. Bonsanto, R. Huber and R. Brinkmann},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {AG-Huber_OCT},
pages = {ETh3A.3},
publisher = {Optical Society of America},
title = {Phase-Sensitive Optical Coherence Elastography with a 3.2 MHz FDML-Laser Using Focused Air-Puff Tissue Indentation},
year = {2021},
url = {http://www.osapublishing.org/abstract.cfm?URI=ECBO-2021-ETh3A.3},
abstract = {Tumor discrimination from healthy tissue is often performed by haptically probing tissue elasticity. We demonstrate non-contact elastography using air-puff excitation and tissue indentation measurement by phase-sensitive OCT with a 3.2 MHz FDML-laser.},
}
H. Hakert, M. Eibl, M. Tillich, R. Pries, G. Hüttmann, R. Brinkmann, B. Wollenberg, L. Bruchhage, S. Karpf, and R. Huber,
Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800  cm-1, Optics Letters , vol. 46(14), no. 14, pp. 3456-3459, 07 2021.
DOI:10.1364/OL.424726
Bibtex: BibTeX
@article{Hakert2021,
   author = {H. Hakert, M. Eibl, M. Tillich, R.Pries, G. Hüttmann, R. Brinkmann, B. Wollenberg, K-L. Bruchhage, S. Karpf and R. Huber},
   title = {Time-encoded stimulated Raman scattering microscopy of tumorous human pharynx tissue in the fingerprint region from 1500–1800  cm-1},
   journal = {Optics Letters},
   volume = {46(14)},
   number = {14},
   pages = {3456-3459},
keywords = {AG-Huber_NL, Clinical applications, Master oscillator power amplifiers, Optical coherence tomography, Raman scattering, Stimulated Raman scattering, Stimulated scattering},
   DOI = {https://doi.org/10.1364/OL.424726},
   year = {2021},
   type = {Journal Article}
}
P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, C. Hagel, M. Bonsanto, R. Huber, and R. Brinkmann,
Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , SPIE, 032021. pp. 66 -- 73.
DOI:10.1117/12.2578391
Bibtex: BibTeX
@inproceedings{Strenge2021,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, C. Hagel, M. Bonsanto, R. Huber and R. Brinkmann},
title = {{Creating a depth-resolved OCT-dataset for supervised classification based on ex vivo human brain samples}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {66 -- 73},
abstract = {Optical coherence tomography (OCT) has the potential to become an additional imaging modality for surgical guidance in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. Interpretation of the images, however, is still a big challenge. A method to create a labeled OCT dataset based on ex vivo brain samples is introduced. The tissue samples were embedded in an agarose mold giving them a distinctive shape before images were acquired with two OCT systems (spectral domain (SD) and swept source (SS) OCT) and histological sections were created and segmented by a neuropathologist. Based on the given shape, the corresponding OCT images for each histological image can be determined. The transfer of the labels from the histological images onto the OCT images was done with a non-affine image registration approach based on the tissue shape. It was demonstrated that finding OCT images of a tissue sample corresponding to segmented histological images without any color or laser marking is possible. It was also shown that the set labels can be transferred onto OCT images. The accuracy of method is 26 ± 11 pixel, which translates to 192 ± 75 μm for the SS-OCT and 94 ± 43 μm for the SD-OCT. The dataset consists of several hundred labeled OCT images, which can be used to train a classification algorithm.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, image registration, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {https://doi.org/10.1117/12.2578391}
}
P. Strenge, B. Lange, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber, and R. Brinkmann,
Characterization of brain tumor tissue with 1310 nm optical coherence tomography, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV , Joseph A. Izatt and James G. Fujimoto, Eds. SPIE, 032021. pp. 74 -- 80.
DOI:10.1117/12.2578409
Bibtex: BibTeX
@inproceedings{Strenge2021A,
author = {P. Strenge, B. Lange, C. Grill, W. Draxinger, V. Danicke, D. Theisen-Kunde, H. Handels, M. Bonsanto, C. Hagel, R. Huber and R. Brinkmann},
title = {{Characterization of brain tumor tissue with 1310 nm optical coherence tomography}},
volume = {11630},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {74 -- 80},
abstract = {The separation of tumorous brain tissue and healthy brain tissue is still a big challenge in the field of neurosurgery, especially when it comes to the detection of different infiltration grades of glioblastoma multiforme at the tumor border. On the basis of a recently created labelled OCT dataset of ex vivo glioblastoma multiforme tumor samples the detection of brain tumor tissue and the identification of zones with varying degrees of infiltration of tumor cells was investigated. The identification was based on the optical properties, which were extracted by an exponential fit function. The results showed that a separation of tumorous tissue and healthy white matter based on these optical properties is possible. A support vector machine was trained on the optical properties to separate tumor from healthy white matter tissue, which achieved a sensitivity of 91% and a specificity of 76% on an independent training dataset.},
keywords = {AG-Huber_OCT, optical coherence tomography, OCT, glioblastoma multiforme, MHz-OCT, brain imaging, tumor, neurosurgery},
year = {2021},
URL = {hhttps://doi.org/10.1117/12.2578409}
}
A. Kyo, M. Yamamoto, K. Hirayama, T. Kohno, D. Theisen-Kunde, R. Brinkmann, Y. Miura, and S. Honda,
Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy, Sci Rep , vol. 11(1), pp. 8973, 2021.
DOI:10.1038/s41598-021-88372-8
Bibtex: BibTeX
@article{Kyo-2021,
   author = {Kyo, A.;Yamamoto, M.;Hirayama, K.;Kohno, T.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.},
   title = {Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy},
   journal = {Sci Rep},
   volume = {11(1)},
  
   pages = {8973},
   ISSN = {2045-2322},
   DOI = {10.1038/s41598-021-88372-8},
   year = {2021},
   type = {Journal Article}
}
V. Kleymann, M. Schaller, M. Wilson, M. Mordmüller, R. Brinkmann, K. Worthmann, and M. Müller,
State and parameter estimation for model-based retinal laser treatment, IFAC-PapersOnLine , vol. 54(6), pp. 244-250, 2021.
DOI:https://doi.org/10.1016/j.ifacol.2021.08.552
Datei: S2405896321013276
Bibtex: BibTeX
@article{Kleyman2021,
   author = {Kleyman, V;Schaller, M;Wilson, M;Mordmüller, M;Brinkmann, R;Worthmann, K and Müller, M.A.},
   title = {State and parameter estimation for model-based retinal laser treatment⁎⁎The collaborative project ”Temperature controlled retinal laser treatment” is funded by the German Research Foundation (DFG) under the project number 430154635 (MU 3929/3-1, WO 2056/7-1, BR 1349/6-1). MS was also funded by the DFG (grant WO 2056/2-1, project number 289034702). KW gratefully acknowledges funding by the German Research Foundation (DFG; grant WO 2056/6-1, project number 406141926)},
   journal = {IFAC-PapersOnLine},
   volume = {54(6)},
 
   pages = {244-250},
   ISSN = {2405-8963},
   DOI = {https://doi.org/10.1016/j.ifacol.2021.08.552},
   url = {https://www.sciencedirect.com/science/article/pii/S2405896321013276},
   year = {2021},
   type = {Journal Article}
}
E. Seifert, J. Tode, A. Pielen, D. Theisen-Kunde, C. Framme, J. Roider, Y. Miura, R. Birngruber, and R. Brinkmann,
Algorithms for optoacoustically controlled selective retina therapy (SRT), Photoacoustics , vol. 25, pp. 100316, 2021.
Datei: S2213597921000756
Bibtex: BibTeX
@article{Seifert2021,
   author = {Seifert, E;Tode, J;Pielen, A;Theisen-Kunde, D;Framme, C;Roider, J;Miura, Y;Birngruber, R and Brinkmann, R},
   title = {Algorithms for optoacoustically controlled selective retina therapy (SRT)},
   journal = {Photoacoustics},
Keywords = {SRT; Lasers in medicine; Ophthalmology; RPE; Selectivity; Algorithm; Retina therapy; Optoacoustics; Feedback},
   volume = {25},
   pages = {100316},
   ISSN = {2213-5979},
   url = {https://www.sciencedirect.com/science/article/pii/S2213597921000756},
   year = {2021},
   type = {Journal Article}
}
M. Mordmüller, V. Kleymann, M. Schaller, M. Wilson, K. Worthmann, M. Müller, and R. Brinkmann,
Towards Model-based Control Techniques for Retinal Laser Treatment Using Only One Laser, in ECBO , 2021.
Datei: 12.2615851
Bibtex: BibTeX
@inproceedings{Mordmüller2021,
   author = {Mordmüller, M;Kleymann, V;Schaller, M;Wilson, M;Wothmann, K;Müller, M A and Brinkman, R},
   title = { Towards Model-based Control Techniques for Retinal Laser
Treatment Using Only One Laser},
   booktitle = {ECBO},
url = {https://doi.org/10.1117/12.2615851},
year = {2021},
   type = {Conference Proceedings}
}
C. Burri, A. Hutfilz, L. Grimm, S. Salzmann, P. Arnold, B. Považay, C. Meier, A. Ebneter, D. Theisen-Kunde, and R. Brinkmann,
Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery, Applied Sciences , vol. 11(12), pp. 5535, 2021.
DOI:https://doi.org/10.3390/app11125535
Datei: 5535
Bibtex: BibTeX
@article{Burri2021,
   author = {Burri, C;Hutfilz, A;Grimm, L;Salzmann, S;Arnold, P;Považay, B;Meier, C;Ebneter, A;Theisen-Kunde, D and Brinkmann, R},
   title = {Dynamic OCT Signal Loss for Determining RPE Radiant Exposure Damage Thresholds in Microsecond Laser Microsurgery},
   journal = {Applied Sciences},
   volume = {11(12)},
   
   pages = {5535},
   ISSN = {2076-3417},
   DOI = { https://doi.org/10.3390/app11125535},
   url = {https://www.mdpi.com/2076-3417/11/12/5535},
   year = {2021},
keywords = {selective retina therapy; viability assay; photocoagulation; microbubble formation;
thermomechanical damage; fringe washout; coherence-loss},
   type = {Journal Article}
}
M. Mordmüller, V. Kleymann, M. Schaller, M. Wilson, D. Theisen-Kunde, K. Worthmann, M. Müller, and R. Brinkmann,
Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate, Advanced Optical Technologies , 2021.
Datei: aot-2021-0041
Bibtex: BibTeX
@article{Mordmüller-2021,
   author = {Mordmüller, M;Kleyman, V;Schaller, M;Wilson, M;Theisen-Kunde, D;Worthmann, K;Müller, M.A and Brinkmann, R},
   title = {Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate},
   journal = {Advanced Optical Technologies},
Keywords = {extended Kalman filter; laser-coagulation; model predictive control; ophthalmology; photo-acoustics},
  
   url = {https://doi.org/10.1515/aot-2021-0041},
   year = {2021},
   type = {Journal Article}
}
E. Richert, J. Papenkort, C. von der Burchard, A. Klettner, P. Arnold, R. Lucius, R. Brinkmann, C. Framme, J. Roider, and J. Tode,
Selective retina therapy and thermal stimulation of the retina: different regenerative properties - implications for AMD therapy, BMC Ophthalmology , vol. 21(1), pp. 412, 2021.
Datei: s12886-021-02188-8
Bibtex: BibTeX
@article{Richert2021,
   title        = {Selective retina therapy and thermal stimulation of the retina: different regenerative properties - implications for AMD therapy},
   author       = {Richert, E;Papenkort, J;von der Burchard, C;Klettner, A;Arnold, P;Lucius, R;Brinkmann, R;Framme, C;Roider, J and Tode, J},
   year         = 2021,
   journal      = {BMC Ophthalmology},
   volume       = {21(1)},
   pages        = 412,
   issn         = {1471-2415},
   url          = {https://doi.org/10.1186/s12886-021-02188-8},
   keywords     = {Selective retina therapy (SRT), Thermal stimulation of the retina (TSR),  Age- related macular  degeneration (AMD), Regeneration, Rejuvenation},
   type         = {Journal Article}
}
M. Büttner, B. Luger, W. Moulig, B. Junker, C. Framme, C. Jacobson, K. Knoll, A. Pielen, SRT Study Group-Theisen-Kunde, Brinkmann, Miura,Birngruber, R. Brinkmann, D. Theisen-Kunde, and Y. Miura,
Selective retina therapy (SRT) in patients with therapy refractory persistent acute central serous chorioretinopathy (CSC): 3 months functional and morphological results, Graefes Arch Clin Exp Ophthalmol , vol. 259, no. 6, pp. 1401-1410, 2021.
DOI:10.1007/s00417-020-04999-9
Bibtex: BibTeX
@article{Büttner2021,
   author = {Büttner, M.;Luger, B.;Abou Moulig, W.;Junker, B.;Framme, C.;Jacobsen, C.;Knoll, K. and Pielen, A.; SRT Study Group(Brinkmann, R.; Miura, Y.)},
   title = {Selective retina therapy (SRT) in patients with therapy refractory persistent acute central serous chorioretinopathy (CSC): 3 months functional and morphological results},
   journal = {Graefes Arch Clin Exp Ophthalmol},
   volume = {259},
   number = {6},
   pages = {1401-1410},
   ISSN = {0721-832X (Print)
0721-832x},
   DOI = {10.1007/s00417-020-04999-9},
abstract = { PURPOSE: Central serous chorioretinopathy (CSC) is a disease presenting with detachment of the neurosensory retina and characteristic focal leakage on fluorescein angiography. The spontaneous remission rate is 84% within 6 months. In this study, the efficacy of selective retina therapy (SRT) was examined in patients with therapy refractory persistent acute CSC defined by symptoms for at least 6 months and persistent subretinal fluid (SRF) despite eplerenone therapy. MATERIAL AND METHODS: This is a prospective, monocentric observational study in 17 eyes (16 patients, mean age 42 years, 2 female). SRT was performed with the approved R:GEN laser (Lutronic, South Korea), a micropulsed 527-nm Nd:YLF laser device, with a train of 30 pulses of 1.7 μs at 100-Hz repetition rate at the point of focal leakage determined by fluorescein angiography (FA) at baseline (BSL). Visits on BSL, week 4 (wk4), and week 12 (wk12) included best corrected visual acuity (BCVA, logMar), central retinal thickness (CRT) on spectral domain optical coherence tomography (SD-OCT), and FA. Statistical analysis was performed by pair-by-pair comparisons of multiple observations in each case with Bonferroni correction for multiple testing. (IBM SPSS Statistics 25®). RESULTS: Mean CRT at BSL was 387.69 ± 110.4 μm. CRT significantly decreased by 106.31 μm in wk4 (95%-KI: 21.42-191.2; p = 0.01), by 133.63 μm in wk12 (95%-KI: 50.22-217.03; p = 0.001) and by 133.81 μm (95%-KI: 48.88-218.75; p = 0.001) compared to BSL. Treatment success defined as complete resolution of SRF occurred at wk4 in 7/17 eyes (35.3%) and at wk12 in 10/17 eyes (58.8%). Re-SRT was performed in 7/17 eyes (41.2%) after an average of 107.14 ± 96.59 days. Treatment success after Re-SRT was observed in 4/6 eyes (66.6%, 12 weeks after Re-SRT). Mean BCVA did not change significantly from BSL to any later timepoint after adjusting for multiple testing. Notably, eyes with treatment success showed better BCVA at all timepoints and gained more letters compared to failures. CONCLUSION: Single or repetitive SRT may be an effective and safe treatment in 2 of 3 patients suffering from acute persistent CSC after 6 months of symptoms or more. We observed complete resolution of SRF in around 60% of eyes 12 weeks after first SRT treatment and also 12 weeks after Re-SRT treatment in eyes with persistent or recurrent SRF. Results on the long-term course after SRT are still pending.},
keywords = { Central serous chorioretinopathy; Fluorescein angiography; Micropulse laser; OCT; Persistent acute disease; Selective retina treatment; Subretinal fluid. },
   year = {2021},
   type = {Journal Article}
}
D. Theisen-Kunde, W. Draxinger, M. Bonsanto, P. Strenge, N. Detrez, R. Huber, and R. Brinkmann,
1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery, in European Conferences on Biomedical Optics 2021 (ECBO) , Optica Publishing Group, 2021. pp. ETu4A.2.
Weblink: https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2
Datei: abstract.cfm
Bibtex: BibTeX
@inproceedings{Theisen-Kunde:21,
author = {D. Theisen-Kunde and W. Draxinger and M. M. Bonsanto and Paul Strenge and Nicolas Detrez and R. Huber and R. Brinkmann},
booktitle = {European Conferences on Biomedical Optics 2021 (ECBO)},
journal = {European Conferences on Biomedical Optics 2021 (ECBO)},
keywords = {Clinical applications; Fourier domain mode locking; Optical coherence tomography; Optical fibers; Three dimensional reconstruction; White light},
pages = {ETu4A.2},
publisher = {Optica Publishing Group},
title = {1.6 MHz FDML OCT for Intraoperative Imaging in Neurosurgery},
year = {2021},
url = {https://opg.optica.org/abstract.cfm?URI=ECBO-2021-ETu4A.2},
doi = {10.1364/ECBO.2021.ETu4A.2},
abstract = {A 1.6 MHz Fourier-domain mode-locked (FDML) optical coherence tomography (OCT) was adapted to an OR-Microscope for clinical application in neurosurgery. 3D-volume scans at video rate are envisaged with approximately 50{\textmu}m lateral and 20{\textmu}m axial resolution.},
}
E. Seifert, K. Philipp, S. Sonntag, D. Theisen-Kunde, S. Grisanti, R. Birngruber, Y. Miura, and R. Brinkmann,
Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime, Investigative Ophthalmology & Visual Science , vol. 62(3), pp. 32-32, 2021.
DOI:10.1167/iovs.62.3.32
Datei: iovs.62.3.32
Bibtex: BibTeX
@article{Seifert2021,
   author = {Seifert, E;Sonntag, S R;Kleingarn, P;Theisen-Kunde, D;Grisanti, S;Birngruber, R;Miura, Y and Brinkmann, R},
   title = {Investigations on Retinal Pigment Epithelial Damage at Laser Irradiation in the Lower Microsecond Time Regime},
   journal = {Investigative Ophthalmology & Visual Science},
   volume = {62(3)},
  
   pages = {32-32},
   ISSN = {1552-5783},
   DOI = {10.1167/iovs.62.3.32},
   url = {https://doi.org/10.1167/iovs.62.3.32},
   year = {2021},
   type = {Journal Article}
}
S. Sonntag, E. Seifert, M. Hamann, B. Lewke, D. Theisen-Kunde, S. Grisanti, R. Brinkmann, and Y. Miura,
Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States, Life , vol. 11(6), pp. 555, 2021.
DOI:https://www.mdpi.com/2075-1729/11/6/555
Datei: 555
Bibtex: BibTeX
@article{Miura2021-2,
   author = {Sonntag, S R;Seifert, E;Hamann, M;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y},
   title = {Fluorescence Lifetime Changes Induced by Laser Irradiation: A Preclinical Study towards the Evaluation of Retinal Metabolic States},
   journal = {Life},
   volume = {11(6)},
  keywords = {retinal laser treatment; metabolic change; fluorescence lifetime imaging ophthalmoscopy},
   pages = {555},
   ISSN = {2075-1729},
   url = {https://www.mdpi.com/2075-1729/11/6/555},
   year = {2021},
   type = {Journal Article}
}

2020

E. Richert, C. von der Burchard, A. Klettner, P. Arnold, R. Lucius, R. Brinkmann, J. Roider, and J. Tode,
Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models, 09 2020.
Datei: S2590153220300112
Bibtex: BibTeX
@article{RN5351,
   author = {Richert, E;von der Burchard, C;Klettner, A;Arnold, P;Lucius, R;Brinkmann, R;Roider, J and Tode, J},
   title = {Modulation of inflammatory processes by thermal stimulating and RPE regenerative laser therapies in age related macular degeneration mouse models},
   journal = {Cytokine: X},
   volume = {2},
   number = {3},
   pages = {100031},
   ISSN = {2590-1532},
   DOI = {https://doi.org/10.1016/j.cytox.2020.100031},
   url = {https://www.sciencedirect.com/science/article/pii/S2590153220300112},
   year = {2020},
   type = {Journal Article}
}
P. Strenge, B. Lange, C. Grill, W. Draxinger, M. Bonsanto, C. Hagel, R. Huber, and R. Brinkmann,
Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis, in Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV , SPIE, 022020. pp. 82 -- 89.
DOI:10.1117/12.2545659
Bibtex: BibTeX
@inproceedings{Strenge2020,
author = {P. Strenge and B. Lange and C. Grill and W. Draxinger and M. M. Bonsanto and C. Hagel and R. Huber and R. Brinkmann},
title = {{Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis}},
volume = {11228},
booktitle = {Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV},
editor = {Joseph A. Izatt and James G. Fujimoto},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {82 -- 89},
keywords = {AG-Huber_OCT, Optical coherence tomography, OCT, FDML Laser, MHz-OCT, brain tumor, brain imaging, neurosurgery},
year = {2020},

URL = {  https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11228/112282O/Segmented-OCT-data-set-for-depth-resolved-brain-tumor-detection/10.1117/12.2545659.short}
}
M. Luecking, R. Brinkmann, S. Ramos, W. Stork, and N. Heussner,
Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage, CompBioMed , vol. 122, pp. 103835, 2020.
DOI:https://doi.org/10.1016/j.compbiomed.2020.103835
Bibtex: BibTeX
@article{brinkmann2020-2,
   author = {Luecking, M;Brinkmann, R;Ramos, Sc;Stork, W and Heussner, N},
   title = {Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage},
   journal = {CompBioMed},
   volume = {122},
   pages = {103835},
   ISSN = {0010-4825},
   DOI = {https://doi.org/10.1016/j.compbiomed.2020.103835},
 
   year = {2020},
   type = {Journal Article}
}
E. Richert, S. Bartsch, J. Hillenkamp, F. Treumer, J. Tode, C. von der Burchard, R. Brinkmann, A. Klettner, and J. Roider,
Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums, Klin Monatsbl Augenheilkd , vol. 237(02), pp. 192-201, 2020.
DOI:10.1055/a-0838-5633
Datei: a-0838-5633
Bibtex: BibTeX
@article{Brinkmann2020,
   author = {Richert, E;Bartsch, S;Hillenkamp, J;Treumer, F;Tode, J;von der Burchard, C;Brinkmann, R;Klettner, A K and Roider, J},
   title = {Einfluss der Selektiven Retinatherapie (SRT) auf inflammatorische Zellmediatoren des subretinalen Raums},
   journal = {Klin Monatsbl Augenheilkd},
   volume = {237(02)},
   
   pages = {192-201},
   ISSN = {0023-2165},
   DOI = {10.1055/a-0838-5633},
   year = {2020},
   type = {Journal Article}
}
V. Kleymann, H. Gernandt, K. Worthmann, H. Abbas, R. Brinkmann, and M. Müller,
Modeling parameter for temperature controlled retinal laser therapies, DeGruyter-at-Automatisierungstechnik , vol. 68(11), pp. 953-966, 2020.
Datei: article-p953.xml
Bibtex: BibTeX
@article{Kleymann2020,
   author = {Kleymann, V;Gernandt, H;Worthmann, K;Hossam, S.A;Brinkmann, R and Müller, A.M},
   title = {Modeling parameter for temperature controlled retinal laser therapies },
   journal = {DeGruyter-at-Automatisierungstechnik},
   volume = {68(11)},
keywords = {retinal photocoagulation, parametric model order
reduction, identification},
   pages = {953-966},
  URL = {https://www.degruyter.com/view/journals/auto/68/11/article-p953.xml},
   year = {2020},
   type = {Journal Article}
}

M. Yamamoto, Y. Miura, K. Hirayama, T. Kohno, D. Kabata, D. Theisen-Kunde, R. Brinkmann, and S. Honda,
Predictive factors of outcome of selective retina therapy for diabetic macular edema, International Ophthalmology , 2020.
Datei: s10792-020-01288-6
Bibtex: BibTeX
@article{Miura2020-2,
   author = {Yamamoto, M;Miura, Y;Hirayama, K;;Kohno, T;Kabata, D;Theisen-Kunde, D;Brinkmann, R and Honda, S;},
   title = {Predictive factors of outcome of selective retina therapy for diabetic macular edema},
   journal = {International Ophthalmology},
   ISSN = {1573-2630},
   
   url = {https://doi.org/10.1007/s10792-020-01288-6},
   year = {2020},
   type = {Journal Article}
}
E. Richert, J. Papenkort, A. Klettner, J. Tode, S. Koinzer, R. Brinkmann, C. Fink, T. Roeder, R. Lucius, and J. Roider,
Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR), Lasers in Surgery and Medicine , 2020.
DOI:DOI 10.1002/lsm.23288
Bibtex: BibTeX
@article{Richert2020,
   author = {Richert, E;Papenkort, J;Klettner, A;Tode, J;Koinzer, S;Brinkmann, R;Fink, C;Roeder, T;Lucius, R. and Roider, J},
   title = {Response of Retinal Pigment Epithelium (RPE)‐Choroid Explants to Thermal Stimulation Therapy of the RPE (TSR)},
   journal = {Lasers in Surgery and Medicine},
Keywords = {age‐related macular degeneration; thermal stimulation therapy of the retinal pigment epithelium;
matrix metalloproteases; pigment epithelium derived factor; retinal pigment epithelium; vascular endothelial
growth factor; transforming growth factor‐β},
   DOI = {DOI 10.1002/lsm.23288},
   year = {2020},
   type = {Journal Article}
}
K. Hirayama, M. Yamamoto, T. Kohno, A. Kyo, D. Theisen-Kunde, R. Brinkmann, Y. Miura, and S. Honda,
Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome, Graefes Arch Clin Exp Ophthalmol , vol. 259, pp. 387-393, 2020.
DOI:10.1007/s00417-020-04931-1
Bibtex: BibTeX
@article{Hirayama2020,
   author = {Hirayama, K.;Yamamoto, M.;Kohno, T.;Kyo, A.;Theisen-Kunde, D.;Brinkmann, R.;Miura, Y. and Honda, S.},
   title = {Selective retina therapy (SRT) for macular serous retinal detachment associated with tilted disc syndrome},
   journal = {Graefes Arch Clin Exp Ophthalmol},
   ISSN = {0721-832x},
 volume = {259},
   pages = {387-393},
   DOI = {10.1007/s00417-020-04931-1},
   year = {2020},
   type = {Journal Article}
}
M. Yamamoto, Y. Miura, A. Kyo, K. Hirayama, T. Kohno, D. Theisen-Kunde, R. Brinkmann, and S. Honda,
Selective retina therapy for subretinal fluid associated with choroidal nevus, Amer J Ophthalm Case Rep , vol. 19, pp. 100794, 2020.
DOI:https://doi.org/10.1016/j.ajoc.2020.100794
Bibtex: BibTeX
@article{yamamoto2020,
   author = {Yamamoto, M;Miura, Y;Kyo, A;Hirayama, K;Kohno, T;Theisen-Kunde, D;Brinkmann, R and Honda, S},
   title = {Selective retina therapy for subretinal fluid associated with choroidal nevus},
   journal = {Amer J Ophthalm Case Rep},
   volume = {19},
   pages = {100794},
   ISSN = {2451-9936},
keywords = {Laser therapy, Choroidal tumor, Retinal pigment epithelium, Retinal disorder},
   DOI = {https://doi.org/10.1016/j.ajoc.2020.100794},
   
   year = {2020},
   type = {Journal Article}
}

2019

J. Kolb, D. Weng, H. Hakert, M. Eibl, W. Draxinger, T. Meyer-Zedler, T. Gottschall, R. Brinkmann, R. Birngruber, J. Popp, J. Limpert, S. Karpf, and R. Huber,
Virtual HE histology by fiber-based picosecond two-photon microscopy, in Multiphoton Microscopy in the Biomedical Sciences XIX , Ammasi Periasamy; Peter T. C. So; Karsten König, Eds. International Society for Optics and Photonics, 022019. pp. 108822F.
DOI:10.1117/12.2507866
Bibtex: BibTeX
@inproceedings{10.1117/12.2507866,
author = {Jan Philip Kolb and Daniel Weng and Hubertus Hakert and Matthias Eibl and Wolfgang Draxinger and Tobias Meyer and Thomas Gottschall and Ralf  Brinkmann and Reginald Birngruber and J{\"u}rgen Popp and Jens Limpert and Sebastian Nino Karpf and Robert Huber},
title = {{Virtual HE histology by fiber-based picosecond two-photon microscopy}},
volume = {10882},
booktitle = {Multiphoton Microscopy in the Biomedical Sciences XIX},
editor = {Ammasi Periasamy and Peter T. C. So and Karsten K{\"o}nig},
organization = {International Society for Optics and Photonics},
publisher = {SPIE},
pages = {108822F},
abstract = {Two-Photon Microscopy (TPM) can provide three-dimensional morphological and functional contrast in vivo. Through proper staining, TPM can be utilized to create virtual, HE equivalent images and thus can improve throughput in histology-based applications. We previously reported on a new light source for TPM that employs a compact and robust fiber-amplified, directly modulated laser. This laser is pulse-to-pulse wavelength switchable between 1064 nm, 1122 nm, and 1186 nm with an adjustable pulse duration from 50ps to 5ns and arbitrary repetition rates up to 1MHz at kW-peak powers. Despite the longer pulse duration, it can achieve similar average signal levels compared to fs-setups by lowering the repetition rate to achieve similar cw and peak power levels. The longer pulses lead to a larger number of photons per pulse, which yields single shot fluorescence lifetime measurements (FLIM) by applying a fast 4 GSamples/s digitizer. In the previous setup, the wavelengths were limited to 1064 nm and longer. Here, we use four wave mixing in a non-linear photonic crystal fiber to expand the wavelength range down to 940 nm. This wavelength is highly suitable for imaging green fluorescent proteins in neurosciences and stains such as acridine orange (AO), eosin yellow (EY) and sulforhodamine 101 (SR101) used for histology applications. In a more compact setup, we also show virtual HE histological imaging using a direct 1030 nm fiber MOPA.},
keywords = {Multiphoton Microscopy, Four Wave Mixing, FWM, Histology, Laser, Non Linear Microscopy, Two Photon Microscopy, JenLab Young Investigator Award},
year = {2019},
doi = {10.1117/12.2507866},
URL = {https://doi.org/10.1117/12.2507866}
}
K. Hirayama, M. Yamamoto, T. Kohno, D. Theisen-Kunde, R. Brinkmann, Y. Miura, and S. Honda,
Change in the Thickness of Retinal Layers after Selective Retina Therapy (SRT) in Patients with Central Serous Chorioretinopathy, Osaka City Med. , vol. 65, pp. 55-63, 2019.
Datei: G0000438repository_00306096-65-1-55
Bibtex: BibTeX
@article{Miura2019,
   author = {Hirayama, K;Manabu Yamamoto, M; Takeya Kohno, T; Miura, Y; Brinkmann, R;  Shiraki,K;Theisen-Kunde, D; and Honda, S;},
   title = {Change in the Thickness of Retinal Layers after Selective Retina
Therapy (SRT) in Patients with Central Serous Chorioretinopathy},
   journal = {Osaka City Med.},
   volume = {65},
   pages = {55-63},
   url = {http://dlisv03.media.osaka-cu.ac.jp/il/meta_pub/G0000438repository_00306096-65-1-55},
   year = {2019},
   type = {Journal Article}
}
B. Považay, R. Brinkmann, M. Stoller, and R. Kessler,
Selective Retina Therapy, in High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics , Bille, Josef F., Eds. Cham: Springer International Publishing, 2019, pp. 237-259.
DOI:https://doi.org/10.1007/978-3-030-16638-0_11
ISBN:978-3-030-16638-0
Datei: 978-3-030-16638-0_11
Bibtex: BibTeX
@inbook{Brinkmann2019,
   author = {Považay, Boris;Brinkmann, Ralf;Stoller, Markus and Kessler, Ralf},
   title = {Selective Retina Therapy},
   booktitle = {High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics},
   editor = {Bille, Josef F.},
   publisher = {Springer International Publishing},
   address = {Cham},
   pages = {237-259},
   ISBN = {978-3-030-16638-0},
  
   url = {https://doi.org/10.1007/978-3-030-16638-0_11},
   year = {2019},
   type = {Book Section}
}
Y. Miura, B. Lewke, A. Hutfilz, and R. Brinkmann,
Change in fluorescence lifetime of retinal pigment epithelium under oxidative stress, Nippon Ganka Gakkai Zasshi , pp. 105-114, 2019.
Datei: Disp
Bibtex: BibTeX
@article{Miura2019/3,
   
   author = {Miura, Y;Lewke, B;Hutfilz, A and Brinkmann, R},
   title = {Change in fluorescence lifetime of retinal pigment epithelium under oxidative stress},
   journal = {Nippon Ganka Gakkai Zasshi },
  
   pages = {105-114},
   url = {http://journal.nichigan.or.jp/Disp?style=abst&vol=123&year=2019&mag=0&number=2&start=105},
   year = {2019},
   type = {Journal Article}
}

A. Hutfilz, S. Sonntag, B. Lewke, D. Theisen-Kunde, S. Grisanti, R. Brinkmann, and Y. Miura,
Fluorescence Lifetime Imaging Ophthalmoscopy of the Retinal Pigment Epithelium During Wound Healing After Laser Irradiation, Translational Vision Science & Technology , vol. 8(5), 2019.
DOI:10.1167/tvst.8.5.12
Bibtex: BibTeX
@article{Hutfilz2019,
   author = {Hutfilz, A;Sonntag, S;Lewke, B;Theisen-Kunde, D;Grisanti, S;Brinkmann, R and Miura, Y},
   title = {Fluorescence Lifetime Imaging Ophthalmoscopy of the Retinal Pigment Epithelium During Wound Healing After Laser Irradiation},
   journal = {Translational Vision Science & Technology},
   volume = {8(5)},
 
   ISSN = {2164-2591},
   DOI = {10.1167/tvst.8.5.12},
   year = {2019},
   type = {Journal Article}
}
Y. Miura, E. Seifert, J. Rehra, K. Kern, D. Theisen-Kunde, M. Denton, and R. Brinkmann,
Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study, Int J Hyperth , pp. 1-7, 2019.
Datei: 02656736.2019.1590653
Bibtex: BibTeX
@article{Miura2019/4,
   author = {Miura, Y;Seifert, E;Rehra, J;Kern, K;Theisen-Kunde, D;Denton, M and Brinkmann, R},
   title = {Real-time optoacoustic temperature determination on cell cultures during heat exposure: a feasibility study},
   journal = {Int J Hyperth},
   pages = {1-7},
   ISSN = {0265-6736},
  
   url = {https://doi.org/10.1080/02656736.2019.1590653},
   year = {2019},
   type = {Journal Article}
}
F. Strittmatter, M. Eisel, R. Brinkmann, B. Lange, J. Cordes, and R. Sroka,
Laser-induced lithotripsy: a review, insight into laboratory work, and lessons learned, Translational Biophotonics , vol. n/a, no. n/a, pp. e201900029, 2019.
DOI:10.1002/tbio.201900029
Datei: tbio.201900029
Bibtex: BibTeX
@article{Brinkmann2020,
   author = {Strittmatter, F;Eisel, M; Brinkmann, R; Cordes, J;Lange, B and Sroka, R},
   title = {Laser-induced lithotripsy: a review, insight into laboratory work, and lessons learned},
   journal = {Translational Biophotonics},
   volume = {n/a},
   number = {n/a},
   pages = {e201900029},
   ISSN = {2627-1850},
   DOI = {10.1002/tbio.201900029},
   url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/tbio.201900029},
   year = {2019},
   type = {Journal Article}
}
N. Detrez, Y. Miura, E. Seifert, D. Theisen-Kunde, and R. Brinkmann,
Heating and optoacoustic temperature determination of cell cultures, in Proc. SPIE 11079, Medical Laser Applications and Laser-Tissue Interactions IX , SPIE, 2019.
Datei: 12.2527024
Bibtex: BibTeX
@inproceedings{Detrez2019,
   author = {Detrez, N;Miura, Y;Seifert, E;Theisen-Kunde, D and Brinkmann, R},
   title = {Heating and optoacoustic temperature determination of cell cultures},
   publisher = {SPIE},
   volume = {11079},
   series = {European Conferences on Biomedical Optics},
booktitle =    {Proc. SPIE 11079, Medical Laser Applications
and Laser-Tissue Interactions IX},
   url = {https://doi.org/10.1117/12.2527024},
keywords = {Laser, Noninvasive thermometry, hyperthermia, temperature measurement, photoacoustics}, optoacoustics,
   year = {2019},
   type = {Conference Proceeding}
}

2018

E. Seifert, J. Tode, A. Pielen, D. Theisen-Kunde, C. Framme, J. Roider, Y. Miura, R. Birngruber, and R. Brinkmann,
Selective retina therapy: toward an optically controlled automatic dosing, J Biomed Opt , pp. 1-12, Nov. 2018.
DOI:10.1117/1.JBO.23.11.115002
Bibtex: BibTeX
@article{seifert2018,
   author = {Seifert, E; Tode, J; Pielen, A; Theisen-Kunde, D; Framme, C; Roider, J; Miura, Y; Birngruber, R and Brinkmann, R},
   title = {Selective retina therapy: toward an optically controlled automatic dosing},
   journal = {J Biomed Opt},
   
   pages = {1-12},
   ISSN = {1560-2281 (Electronic)
1083-3668 (Linking)},
   DOI = {10.1117/1.JBO.23.11.115002},   
keywords = {algorithm, lasers in medicine, ophthalmology, retinal pigment epithelium, selective retina therapy, selectivity},
   year = {2018},
   type = {Journal Article}
}
T. Park, J. Choi, Y. Kim, J. Kim, R. Brinkmann, J. Lyu, and J. Han,
Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes, Graefe's Archive for Clinical and Experimental Ophthalmology , pp. 341-353, 2018.
Datei: s00417-017-3883-7
Bibtex: BibTeX
@article{Brinkmann2018,
   author = {Han, J W; Choi, J; Kim, Y S, Kim, J; Brinkmann, R; Lyu, J and Park, T K},
   title = {Comparison of the neuroinflammatory responses to selective retina therapy and continuous-wave laser photocoagulation in mouse eyes},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   
   pages = {341-353},
 
URL= {https://doi.org/10.1007/s00417-017-3883-7},
   year = {2018},
   type = {Journal Article}
}
K. Kern, C. Mertineit, R. Brinkmann, and Y. Miura,
Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells, Exp Eye Res , pp. 117-126, 2018.
DOI:10.1016/j.exer.2018.02.013
Bibtex: BibTeX
@article{Miura2018,
   author = {Kern, K; Mertineit, C L; Brinkmann, R and Miura, Y},
   title = {Expression of heat shock protein 70 and cell death kinetics after different thermal impacts on cultured retinal pigment epithelial cells},
   journal = {Exp Eye Res},
  
   pages = {117-126},
   ISSN = {1096-0007 (Electronic)
0014-4835 (Linking)},
   DOI = {10.1016/j.exer.2018.02.013},
   year = {2018},
   type = {Journal Article}
}
E. Richert, S. Koinzer, J. Tode, K. Schlott, R. Brinkmann, J. Hillenkamp, A. Klettner, and J. Roider,
Release of Different Cell Mediators During Retinal Pigment Epithelium Regeneration Following Selective Retina Therapy, Investigative Ophthalmology & Visual Science , pp. 1323-1331, 2018.
DOI:10.1167/iovs.17-23163
Datei: iovs.17-23163
Bibtex: BibTeX
@article{Brinkmann2018,
   author = {Richert, E; Koinzer, S; Tode, J; Schlott, K; Brinkmann, R; Hillenkamp, J; Klettner, A and Roider, J},
   title = {Release of Different Cell Mediators During Retinal Pigment Epithelium Regeneration Following Selective Retina Therapy},
   journal = {Investigative Ophthalmology & Visual Science},
   
   pages = {1323-1331},
   ISSN = {1552-5783},
  
   url = {http://dx.doi.org/10.1167/iovs.17-23163},
   year = {2018},
   type = {Journal Article}
}
C. Herzog, B. Schmarbeck, O. Thomsen, M. Siebert, and R. Brinkmann,
Temperature-controlled laser therapy of the retina via robust adaptive Ɦ∞-control., .... De Gruyter, 2018.
Datei: auto-2018-0066
Bibtex: BibTeX
   @book{Brinkmann2018/2,
   author = {Herzog, C;Thompson, O; Schmarbeck, B; Siebert, M and Brinkmann, R},
   title = {Temperature-controlled laser therapy of the retina via robust adaptive Ɦ∞-control},
   publisher = {De Gruyter},
   
   journal = {at-Automatisierungstechnik},
   pages = {1051-1063},   
   year = {2018},
   type = {Book},
  URL = {https://doi.org/10.1515/auto-2018-0066},
   
  
keywords = {Laser therapy; robust control; parameter estimation; photoacoustics; real-time temperature determination},
   abstract = {Recent studies demonstrate therapeutic benefits in retinal laser therapy even for non-visible effects of the irradiation. However, in practice, ophthalmologists often rely on the visual inspection of irradiation sites to manually set the laser power for subsequent ones. Since absorption properties vary strongly between sites, this procedure can lead to under- or over-treatment. To achieve safe automatic retinal laser therapy, this article proposes a robust control scheme based on photoacoustic feedback of the retinal temperature increase. The control scheme is further extended to adapt to real-time parameter estimates and associated bounds on the uncertainty of each irradiation site. Both approaches are successfully validated in ex vivo experiments on pigs’ eyes, achieving consistent irradiation durations of 55 ms despite the uncertainty in absorption properties.}
}

2017

A. Baade, C. von der Burchard, M. Lawin, S. Koinzer, B. Schmarbeck, K. Schlott, Y. Miura, J. Roider, R. Birngruber, and R. Brinkmann,
Power-controlled temperature guided retinal laser therapy, J Biomed Opt , pp. 1-11, Nov. 2017.
DOI:10.1117/1.jbo.22.11.118001
Bibtex: BibTeX
@article{Baade2017,
   author = {Baade, A; von der Burchard, C; Lawin, M; Koinzer, S; Schmarbeck, B; Schlott, K; Miura, Y; Roider, J; Birngruber, R and Brinkmann, R},
   title = {Power-controlled temperature guided retinal laser therapy},
   journal = {J Biomed Opt},
   
   pages = {1-11},
   ISSN = {1083-3668},
   DOI = {10.1117/1.jbo.22.11.118001},
   year = {2017},
   type = {Journal Article}
}
I. Verbytskyi, M. Münter, C. Buj, and R. Brinkmann,
A Problem of a Displacement Calculation of Tissue Surface in Non-Contact Photoacoustic Tomography, Naukovi Visti NTUU KPI , no. 2, pp. 58-64, 2017.
DOI:10.20535/1810-0546.2017.2.98021
Datei: 1810-0546.2017.2.98021
Bibtex: BibTeX
@article{Verbytskyi2017,
   author = {Verbytskyi, Ievgen and Münter, Michael and Buj, Christian and Brinkmann, Ralf},
   title = {A Problem of a Displacement Calculation of Tissue Surface in Non-Contact Photoacoustic Tomography},
   journal = {Naukovi Visti NTUU KPI},
   number = {2},
   pages = {58-64},
   ISSN = {2519-8890},
   url = {http://dx.doi.org/10.20535/1810-0546.2017.2.98021},
   year = {2017},
   type = {Journal Article}
}
Y. Miura, J. Pruessner, C. Mertineit, K. Kern, M. Münter, M. Moltmann, V. Danicke, and R. Brinkmann,
Continuous-wave Thulium Laser for Heating Cultured Cells to Investigate Cellular Thermal Effects, J Vis Exp , 2017.
DOI:10.3791/54326
Bibtex: BibTeX
@article{Miura2017,
   author = {Miura, Y; Pruessner, J; Mertineit, C L; Kern, K; Muenter, M; Moltmann, M; Danicke, V and Brinkmann, R},
   title = {Continuous-wave Thulium Laser for Heating Cultured Cells to Investigate Cellular Thermal Effects},
   journal = {J Vis Exp},
   
   ISSN = {1940-087x},
   DOI = {10.3791/54326},
   year = {2017},
   type = {Journal Article}
  } 

C. Buj, M. Münter, B. Schmarbeck, J. Horstmann, G. Hüttmann, and R. Brinkmann,
Noncontact holographic detection for photoacoustic tomography, J Biomed Opt , vol. 22, no. 10, pp. 1-14, 2017.
DOI:10.1117/1.jbo.22.10.106007
Bibtex: BibTeX
@article{Buj2017,
   author = {Buj, C; Münter, M; Schmarbeck, B; Horstmann, J; Hüttmann, G and Brinkmann, R},
   title = {Noncontact holographic detection for photoacoustic tomography},
   journal = {J Biomed Opt},
   
   pages = {1-14},
   DOI = {10.1117/1.jbo.22.10.106007},
   year = {2017},
   type = {Journal Article}
}


T. Kepp, S. Koinzer, H. Handels, and R. Brinkmann,
Registrierung von nicht sichtbaren Laserbehandlungsarealen der Retina in Live-Aufnahmen des Fundus, in Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg , Maier-Hein, geb Fritzsche Klaus Hermann and Deserno, geb Lehmann Thomas Martin and Handels, Heinz and Tolxdorff, Thomas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 331-336.
ISBN:978-3-662-54345-0
Datei: 978-3-662-54345-0_74
Bibtex: BibTeX
@inbook{Kepp2017,
   author = {Kepp, Timo and Koinzer, Stefan and Handels, Heinz and Brinkmann, Ralf},
   title = {Registrierung von nicht sichtbaren Laserbehandlungsarealen der Retina in Live-Aufnahmen des Fundus},
   booktitle = {Bildverarbeitung für die Medizin 2017: Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 12. bis 14. März 2017 in Heidelberg},
   editor = {Maier-Hein, geb Fritzsche Klaus Hermann and Deserno, geb Lehmann Thomas Martin and Handels, Heinz and Tolxdorff, Thomas},
   publisher = {Springer Berlin Heidelberg},
   address = {Berlin, Heidelberg},
   pages = {331-336},
   ISBN = {978-3-662-54345-0},
   url = {http://dx.doi.org/10.1007/978-3-662-54345-0_74},
   year = {2017},
   type = {Book Section}
}
J. Tode, E. Richert, C. von der Burchard, S. Koinzer, A. Klettner, R. Brinkmann, and J. Roider,
Schonende retinale Lasertherapien als Behandlungsoption der trockenen AMD, Spitzenforschung in der Ophthalmologie , pp. 170-173, 2017.
Datei: DOG_Sonderband_WEB-min.pdf
Bibtex: BibTeX
@article{Brinkmann2017,
   author = {Tode, J;Richert, E;von der Burchard, C;Koinzer, S;Klettner, A;Brinkmann, R and Roider, J},
   title = {Schonende retinale Lasertherapien als Behandlungsoption der trockenen AMD },
   journal = {Spitzenforschung in der Ophthalmologie},
   pages = {170-173},
   ISSN = {1861-4620},
   url = {https://www.dog.org/wp-content/uploads/2009/12/DOG_Sonderband_WEB-min.pdf#page=1&zoom=auto,-57,877},
   year = {2017},
   type = {Journal Article}
}
B. Lange, D. Jocham, R. Brinkmann, and J. Cordes,
Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: Clinical proof of concept study, Lasers in Surgery and Medicine , vol. 49, no. 4, pp. 361-365, 2017.
DOI:10.1002/lsm.22611
Bibtex: BibTeX
@article{Lange2017,
   author = {Lange, Birgit and Jocham, Dieter and Brinkmann, Ralf and Cordes, Jens},
   title = {Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: Clinical proof of concept study},
   journal = {Lasers in Surgery and Medicine},
   volume = {49},
   number = {4},
   pages = {361-365},
   ISSN = {1096-9101},
   DOI = {10.1002/lsm.22611},
   year = {2017},
   type = {Journal Article}
}

2016

A. Yasui, M. Yamamoto, K. Hirayama, K. Shiraki, D. Theisen-Kunde, R. Brinkmann, Y. Miura, and T. Kohno,
Retinal sensitivity after selective retina therapy (SRT) on patients with central serous chorioretinopathy, Graefe's Archive for Clinical and Experimental Ophthalmology , pp. 1-12, 2016.
Datei: s00417-016-3441-8
Bibtex: BibTeX
@article{Yasui2016,
   author = {Yasui, Ayako and Yamamoto, Manabu and Hirayama, Kumiko and Shiraki, Kunihiko and Theisen-Kunde, Dirk and Brinkmann, Ralf and Miura, Yoko and Kohno, Takeya},
   title = {Retinal sensitivity after selective retina therapy (SRT) on patients with central serous chorioretinopathy},
   journal = {Graefe's Archive for Clinical and Experimental Ophthalmology},
   pages = {1-12},
   abstract = {To assess retinal sensitivity after selective retina therapy (SRT) in patients with central serous chorioretinopathy (CSCR).},
   ISSN = {1435-702X},
   url = {http://dx.doi.org/10.1007/s00417-016-3441-8},
   year = {2016},
   type = {Journal Article}
}
G. Hüttmann, M. Moltmann, H. Spahr, J. Tode, A. Roeck, D. Theisen-Kunde, S. Koinzer, and R. Brinkmann,
Retinal lesion formation during photocoagulation investigated by high-speed 1060 nm Doppler-OCT: first clinical results, Investigative Ophthalmology & Visual Science , vol. 57, no. 12, pp. 5852-5852, 2016. https://iovs.arvojournals.org/article.aspx?articleid=2563849 .
Weblink: https://iovs.arvojournals.org/article.aspx?articleid=2563849
Datei:
Bibtex: BibTeX
@article{Hüttmann2016,
   author = {Huttmann, Gereon and Moltmann, Moritz and Spahr, Hendrik and Tode, Jan and de Roeck, Anna and Theisen-Kunde, Dirk and Birngruber, Reginald and Koinzer, Stefan and Brinkmann, Ralf},
   title = {Retinal lesion formation during photocoagulation investigated by high-speed 1060 nm Doppler-OCT: first clinical results},
   journal = {Investigative Ophthalmology & Visual Science},
   volume = {57},
   number = {12},
   pages = {5852-5852},
   abstract = {Abstract Purpose : The molecular processes during heating with a photocoagulation laser, particularly in sub-visible or mere thermal stimulation treatment, have only partly been understood, and different theories exist that try to explain its clinical efficacy. Optical coherence tomography (OCT) was successfully used to grade lesions with high accuracy 1 hour after the treatments and beyond. During the irradiation, changes in tissue scattering and, by use of the Doppler signal, tissue motion caused by thermal expansion and coagulation-induced tissue contraction were shown to correlate ex-vivo and in rabbits with the strength of photocoagulation lesions. Aim of this study was to validate feasibility and reproducibility of these results in humans. Methods : In an ongoing study more than 100 lesions of three patients have been imaged with a slitlamp-based OCT (1060 nm, 90,000 A-scans/s) with varying irradiance during laser exposure. Durations of the exposure were 50 ms and 200 ms; spot size was 300 µm. Eye movements and heart beat were corrected by cross-correlation of the images. Increased tissue scattering and movement of the neuronal retina due to thermal expansion were determined from the image sequences with 3 ms temporal resolution. Results : In the first treatments with this prototype device, we received acceptable image quality in 1/3 of the lesions. Changes in the neuronal retina were successful visualized during and after the laser irradiation, demonstrating the feasibility of a real-time assessment of initial effects of photocoagulation in humans. Lesion visibility in standard, reflection-based OCT was much weaker during treatment compared to 1 hour afterwards. Increased tissue scattering was observed in stronger lesions already during the laser irradiation. At reduced irradiance, scattering increase was only observed after the end of irradiation. However, tissue motion towards the vitreous was still observed in these cases. Conclusions : In conclusion, high-speed OCT recording during photocoagulation measures initial tissue changes during photocoagulation in humans. It may enhance our understanding of the tissue dynamics right after laser irradiation. It may provide useful information for a real-time dosage control as well. This is an abstract that was submitted for the 2016 ARVO Annual Meeting, held in Seattle, Wash., May 1-5, 2016.},
   ISSN = {1552-5783},
   url = {http://dx.doi.org/},
   year = {2016},
   type = {Journal Article}
}
K. Bliedtner, E. Seifert, L. Stockmann, L. Effe, and R. Brinkmann,
Towards real time speckle controlled retinal photocoagulation, 2016. pp. 96931A-96931A-6.
Datei: 12.2212703
Bibtex: BibTeX
@inproceedings{Bliedtner2016,
   author = {Bliedtner, Katharina and Seifert, Eric and Stockmann, Leoni and Effe, Lisa and Brinkmann, Ralf},
   title = {Towards real time speckle controlled retinal photocoagulation},
   volume = {9693},
   pages = {96931A-96931A-6},
   note = {10.1117/12.2212703},
   abstract = {Photocoagulation is a laser treatment widely used for the therapy of several retinal diseases. Intra- and inter-individual variations of the ocular transmission, light scattering and the retinal absorption makes it impossible to achieve a uniform effective exposure and hence a uniform damage throughout the therapy. A real-time monitoring and control of the induced damage is highly requested. Here, an approach to realize a real time optical feedback using dynamic speckle analysis is presented. A 532 nm continuous wave Nd:YAG laser is used for coagulation. During coagulation, speckle dynamics are monitored by a coherent object illumination using a 633nm HeNe laser and analyzed by a CMOS camera with a frame rate up to 1 kHz. It is obvious that a control system needs to determine whether the desired damage is achieved to shut down the system in a fraction of the exposure time. Here we use a fast and simple adaption of the generalized difference algorithm to analyze the speckle movements. This algorithm runs on a FPGA and is able to calculate a feedback value which is correlated to the thermal and coagulation induced tissue motion and thus the achieved damage. For different spot sizes (50-200 μm) and different exposure times (50-500 ms) the algorithm shows the ability to discriminate between different categories of retinal pigment epithelial damage ex-vivo in enucleated porcine eyes. Furthermore in-vivo experiments in rabbits show the ability of the system to determine tissue changes in living tissue during coagulation.},
   url = {http://dx.doi.org/10.1117/12.2212703},
   type = {Conference Proceedings},
year = { 2016}
}
K. Schlott, S. Koinzer, A. Baade, J. Roider, and R. Brinkmann,
Lesion strength control by automatic temperature guided retinal photocoagulation, Journal of Biomedical Optics , vol. 21, no. 9, pp. 098001-098001, 2016.
DOI:10.1117/1.JBO.21.9.098001
Bibtex: BibTeX
@article{Schlott2016,
   author = {Schlott, Kerstin and Koinzer, Stefan and Baade, Alexander and Birngruber, Reginald and Roider, Johann and Brinkmann, Ralf},
   title = {Lesion strength control by automatic temperature guided retinal photocoagulation},
   journal = {Journal of Biomedical Optics},
   volume = {21},
   number = {9},
   pages = {098001-098001},
   note = {10.1117/1.JBO.21.9.098001},
   abstract = {Abstract.  Laser photocoagulation is an established treatment for a variety of retinal diseases. However, when using the same irradiation parameter, the size and strength of the lesions are unpredictable due to unknown inter- and intraindividual optical properties of the fundus layers. The aim of this work is to investigate a feedback system to generate desired lesions of preselectable strengths by automatically controlling the irradiation time. Optoacoustics were used for retinal temperature monitoring. A 532-nm continuous wave Nd:YAG laser was used for photocoagulation. A 75-ns/523-nm Q-switched Nd:YLF laser simultaneously excited temperature-dependent pressure transients, which were detected at the cornea by an ultrasonic transducer embedded in a contact lens. The temperature data were analyzed during the irradiation by a LabVIEW routine. The treatment laser was switched off automatically when the required lesion strength was achieved. Five different feedback control algorithms for different lesion sizes were developed and tested on rabbits in vivo. With a laser spot diameter of 133  μm, five different lesion types with ophthalmoscopically visible diameters ranging mostly between 100 and 200  μm, and different appearances were achieved by automatic exposure time control. The automatically controlled lesions were widely independent of the treatment laser power and the retinal pigmentation.},
   ISSN = {1083-3668},
   DOI = {10.1117/1.JBO.21.9.098001},
   year = {2016},
   type = {Journal Article}
}

2015

G. Hüttmann, S. Koinzer, H. Muller, I. Ellerkamp, A. Baade, M. Moltmann, D. Theisen-Kunde, B. Lange, R. Brinkmann, and R. Birngruber,
Predicting ophthalmoscopic visibility of retinal photocoagulation lesions byhigh-speedOCT: an animal studyinrabbits, Investigative Ophthalmology & Visual Science , vol. 56, no. 7, pp. 5980-5980, 2015. https://iovs.arvojournals.org/article.aspx?articleid=2336071 .
Weblink: https://iovs.arvojournals.org/article.aspx?articleid=2336071
Bibtex: BibTeX
@article{Hüttmann2015,
   author = {Huttmann, Gereon and Koinzer, Stefan Otto Johannes and Müller, Heike and Ellerkamp, Iris and Baade, Alex and Moltmann, Moritz and Theisen-Kunde, Dirk and Lange, Birgit and Brinkmann, Ralf and Birngruber, Reginald},
   title = {Predicting ophthalmoscopic visibility of retinal photocoagulation lesions byhigh-speedOCT: an animal studyinrabbits},
   journal = {Investigative Ophthalmology & Visual Science},
   volume = {56},
   number = {7},
   pages = {5980-5980},
   ISSN = {1552-5783},
   year = {2015},
   type = {Journal Article}
}
P. Steiner, A. Ebneter, L. Berger, M. Zinkernagel, B. Považay, C. Meier, J. Kowal, C. Framme, R. Brinkmann, S. Wolf, and R. Sznitman,
Time-Resolved Ultra–High Resolution Optical Coherence Tomography for Real-Time Monitoring of Selective Retina TherapyTime-Resolved Ultra–High Resolution OCT During SRT, Investigative Ophthalmology & Visual Science , vol. 56, no. 11, pp. 6654-6662, 2015.
DOI:10.1167/iovs.15-17151
Bibtex: BibTeX
@article{Steiner2015,
   author = {Steiner, Patrick and Ebneter, Andreas and Berger, Lieselotte Erika and Zinkernagel, Martin and Považay, Boris and Meier, Christoph and Kowal, Jens H. and Framme, Carsten and Brinkmann, Ralf and Wolf, Sebastian and Sznitman, Raphael},
   title = {Time-Resolved Ultra–High Resolution Optical Coherence Tomography for Real-Time Monitoring of Selective Retina TherapyTime-Resolved Ultra–High Resolution OCT During SRT},
   journal = {Investigative Ophthalmology & Visual Science},
   volume = {56},
   number = {11},
   pages = {6654-6662},
   note = {10.1167/iovs.15-17151},
   abstract = {Abstract Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the RPE. During SRT, the detection of an immediate tissue reaction is challenging, as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 μm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. Optical coherence tomography scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography, and cross-sectional OCT. Results: In cases in which the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusions: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode (www.swissmedic.ch number, 2011-MD-0006).},
   ISSN = {1552-5783},
   DOI = {10.1167/iovs.15-17151},
   year = {2015},
   type = {Journal Article}
}
Y. Park, S. Kang, R. Brinkmann, and Y. Roh,
A Comparative Study of Retinal Function in Rabbits after Panretinal Selective Retina Therapy versus Conventional Panretinal Photocoagulation, Journal of Ophthalmology , vol. 2015, pp. 8, 2015.
DOI:10.1155/2015/247259
Datei: 247259
Bibtex: BibTeX
@article{Park2015,
   author = {Park, Young Gun and Kang, Seungbum and Brinkmann, Ralf and Roh, Young-Jung},
   title = {A Comparative Study of Retinal Function in Rabbits after Panretinal Selective Retina Therapy versus Conventional Panretinal Photocoagulation},
   journal = {Journal of Ophthalmology},
   volume = {2015},
   pages = {8},
   DOI = {10.1155/2015/247259},
   url = {http://dx.doi.org/10.1155/2015/247259},
   year = {2015},
   type = {Journal Article}
}

2014

H. Iwami, J. Pruessner, K. Shiraki, R. Brinkmann, and Y. Miura,
Protective effect of a laser-induced sub-lethal temperature rise on RPE cells from oxidative stress, Exp Eye Res , vol. 124c, pp. 37-47, Mai 2014.
DOI:10.1016/j.exer.2014.04.014
Bibtex: BibTeX
@article{Iwami2014,
   author = {Iwami, H. and Pruessner, J. and Shiraki, K. and Brinkmann, R. and Miura, Y.},
   title = {Protective effect of a laser-induced sub-lethal temperature rise on RPE cells from oxidative stress},
   journal = {Exp Eye Res},
   volume = {124c},
   pages = {37-47},
   note = {1096-0007
Iwami, Hisashi
Pruessner, Joachim
Shiraki, Kunihiko
Brinkmann, Ralf
Miura, Yoko
Journal article
Exp Eye Res. 2014 May 5;124C:37-47. doi: 10.1016/j.exer.2014.04.014.},
   abstract = {Recently introduced new technologies that enable temperature-controlled laser irradiation on the RPE allowed us to investigate temperature-resolved RPE cell responses. In this study we aimed primarily to establish an experimental setup that can realize laser irradiation on RPE cell culture with the similar temperature distribution as in the clinical application, with a precise time/temperature history. With this setup, we conducted investigations to elucidate the temperature-dependent RPE cell biochemical responses and the effect of transient hyperthermia on the responses of RPE cells to the secondary-exposed oxidative stress. Porcine RPE cells cultivated in a culture dish (inner diameter = 30 mm) with culture medium were used, on which laser radiation (lambda = 1940 nm, spot diameter = 30 mm) over 10 s was applied as a heat source. The irradiation provides a radially decreasing temperature profile which is close to a Gaussian shape with the highest temperature in the center. Power setting for irradiation was determined such that the peak temperature (Tmax) in the center of the laser spot at the cells reaches from 40 degrees C to 58 degrees C (40, 43, 46, 50, 58 degrees C). Cell viability was investigated with ethidium homodimer III staining at the time points of 3 and 24 h following laser irradiation. Twenty four hours after laser irradiation the cells were exposed to hydrogen peroxide (H2O2) for 5 h, followed by the measurement of intracellular glutathione, intracellular 4-hydroxynonenal (HNE) protein adducts, and secreted vascular endothelial growth factor (VEGF). The mean temperature threshold for RPE cell death after 3 h was found to be around 52 degrees C, and for 24 h around 50 degrees C with the current irradiation setting. A sub-lethal preconditioning on Tmax = 43 degrees C significantly induced the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio, and decreased H2O2-induced increase of intracellular 4-HNE protein adducts. Although sub-lethal hyperthermia (Tmax = 40 degrees C, 43 degrees C, and 46 degrees C) caused a slight increase of VEGF secretion in 6 h directly following irradiation, secondary exposed H2O2-induced VEGF secretion was significantly reduced in the sub-lethally preheated groups, where the largest effect was seen following the irradiation with Tmax = 43 degrees C. In summary, the current results suggest that sub-lethal thermal laser irradiation on the RPE at Tmax = 43 degrees C for 10 s enhances cell defense system against oxidative stress, with increasing the GSH/GSSG ratio. Together with the results that the decreased amount of H2O2-induced 4-HNE in sub-lethally preheated RPE cells was accompanied by the lower secretion of VEGF, it is also strongly suggested that the sub-lethal hyperthermia may modify RPE cell functionality to protect RPE cells from oxidative stress and associated functional decrease, which are considered to play a significant role in the pathogenesis of age-related macular degeneration and other chorioretinal degenerative diseases.},
   ISSN = {0014-4835},
   DOI = {10.1016/j.exer.2014.04.014},
   year = {2014},
   type = {Journal Article}
}
S. Koinzer, A. Caliebe, L. Portz, M. Saeger, Y. Miura, K. Schlott, R. Brinkmann, and J. Roider,
Comprehensive detection, grading, and growth behavior evaluation of subthreshold and low intensity photocoagulation lesions by optical coherence tomographic and infrared image analysis, Biomed Res Int , vol. 2014, pp. 492679, 2014.
DOI:10.1155/2014/492679
Datei: 492679
Bibtex: BibTeX
@article{Koinzer2014,
   title        = {Comprehensive detection, grading, and growth behavior evaluation of subthreshold and low intensity photocoagulation lesions by optical coherence tomographic and infrared image analysis},
   author       = {Koinzer, S. and Caliebe, A. and Portz, L. and Saeger, M. and Miura, Y. and Schlott, K. and Brinkmann, R. and Roider, J.},
   year         = 2014,
   journal      = {Biomed Res Int},
   volume       = 2014,
   pages        = 492679,
   doi          = {10.1155/2014/492679},
   url          = {http://dx.doi.org/10.1155/2014/492679},
   note         = {2314-6141 Koinzer, Stefan Caliebe, Amke Portz, Lea Saeger, Mark Miura, Yoko Schlott, Kerstin Brinkmann, Ralf Roider, Johann Journal Article Research Support, Non-U.S. Gov't United States Biomed Res Int. 2014;2014:492679. doi: 10.1155/2014/492679. Epub 2014 May 12.},
   abstract     = {PURPOSE: To correlate the long-term clinical effect of photocoagulation lesions after 6 months, as measured by their retinal damage size, to exposure parameters. We used optical coherence tomographic (OCT)-based lesion classes in order to detect and assess clinically invisible and mild lesions. METHODS: In this prospective study, 488 photocoagulation lesions were imaged in 20 patients. We varied irradiation diameters (100/300 microm), exposure-times (20-200 ms), and power. Intensities were classified in OCT images after one hour, and we evaluated OCT and infrared (IR) images over six months after exposure. RESULTS: For six consecutive OCT-based lesion classes, the following parameters increased with the class: ophthalmoscopic, OCT and IR visibility rate, fundus and OCT diameter, and IR area, but not irradiation power. OCT diameters correlated with exposure-time, irradiation diameter, and OCT class. OCT classes discriminated the largest bandwidth of OCT diameters. CONCLUSION: OCT classes represent objective and valid endpoints of photocoagulation intensity even for "subthreshold" intensities. They are suitable to calculate the treated retinal area. As the area is critical for treatment efficacy, OCT classes are useful to define treatment intensity, calculate necessary lesion numbers, and universally categorize lesions in clinical studies.},
   type         = {Journal Article}
}
I. Rohde, and R. Brinkmann,
Gain broadening and mode-locking in overcoupled second harmonic Q-switched microsecond pulses, Journal of Optics , vol. 16, no. 10, pp. 105209, 2014.
Datei: a=105209
Bibtex: BibTeX
@article{Rohde2014,
   author = {Rohde, Ingo and Brinkmann, Ralf},
   title = {Gain broadening and mode-locking in overcoupled second harmonic Q-switched microsecond pulses},
   journal = {Journal of Optics},
   volume = {16},
   number = {10},
   pages = {105209},
   abstract = {An intracavity frequency doubled, Q-switched Nd:YLF emitting at a wavelength of 527 nm was designed with the goal to temporally stretch the Q-switched pulses up to some microseconds at pulse energies of several millijoules. With different resonator configurations pulse durations between 12 μ s and 3 μ s with energies of 1 mJ–4.5 mJ have been achieved, which is demanded for an application in ophthalmology. For tighter intracavity foci and high pump power, however, strong power modulations by trains of picosecond pulses on the rear flank of the microsecond pulses were observed, indicating the occurrence of cascading nonlinearities and mode-locking. Simultaneously a significant increase of the fundamental spectrum up to 5 nm was found. A similar effect, which is referred to as gain broadening, has previously been observed by using ppKTP for intracavity second harmonic generation. This is, to the best of our knowledge, the first observation of this effect with unpoled second harmonic media.},
   ISSN = {2040-8986},
   url = {http://stacks.iop.org/2040-8986/16/i=10/a=105209},
   year = {2014},
   type = {Journal Article}
}

2013

A. Baade, K. Schlott, and R. Brinkmann,
A numerical model for heat and pressure propagation for temperature controlled retinal photocoagulation, 2013. pp. 88030O-88030O-9.
Datei: 12.2033590
Bibtex: BibTeX
@inproceedings{Baade2013,
   author = {Baade, Alexander and Schlott, Kerstin and Birngruber, Reginald and Brinkmann, Ralf},
   title = {A numerical model for heat and pressure propagation for temperature controlled retinal photocoagulation},
   volume = {8803},
   pages = {88030O-88030O-9},
   note = {10.1117/12.2033590},
   abstract = {Retinal photocoagulation is an established treatment for various retinal diseases. The temperature development during a treatment can be monitored by applying short laser pulses in addition to the treatment laser light. The laser pulses induce thermoelastic pressure waves that can be detected at the cornea. We present a numerical model to examine the temperature development during the treatment as well as the formation and propagation of the ultrasonic waves. Using the model, it is possible to determine the peak temperature during retinal photocoagulation from the measured signal, and investigate the behaviour of the temperature profile and the accuracy of the temperature determination under varying conditions such as inhomogeneous pigmentation or change in irradiation parameters. It was shown that there is an uncertainty of 2.5 -9% in the determination of the peak temperature when the absorption coefficient between the absorbing layers is varied by a factor of 2. Furthermore the model was extended in order to incorporate the photoacoustic pressure generation and wave propagation. It was shown that for an irradiation pulse duration of 75 ns the resulting pressure wave energy is attenuated by 76 % due to frequency dependent attenuation in water.},
   url = {http://dx.doi.org/10.1117/12.2033590},
   type = {Conference Proceedings}, 
year = { 2013}
}
I. Rohde, J. Masch, D. Theisen-Kunde, M. Marczynski-Bühlow, G. Lutter, and R. Brinkmann,
Cardiovascular damage after cw and Q-switched 2μm laser irradiation, 2013. pp. 88030I-88030I-6.
Datei: 12.2033550
Bibtex: BibTeX
@inproceedings{Rohde2013,
   author = {Rohde, Ingo and Masch, Jennifer- M. and Theisen-Kunde, Dirk and Marczynski-Bühlow, Martin and Lutter, Georg and Brinkmann, Ralf},
   title = {Cardiovascular damage after cw and Q-switched 2μm laser irradiation},
   volume = {8803},
   pages = {88030I-88030I-6},
   note = {10.1117/12.2033550},
   abstract = {Aiming for laser-assisted resection of calcified aortic valve structures for Transcatheter Aortic Valve Implantation (TAVI), a Q-switched Tm:YAG laser emitting at a wavelength of 2.01 μm was used to evaluate the cutting efficiency on highly calcified human aortic leaflets in-vitro. The calcified aortic leaflets were examined regarding ablation rates and debris generation, using a pulse energy of 4.3 mJ, a pulse duration of 0.8-1 μs and a repetition rate of 1 kHz. The radiation was transmitted via a 200 μm core diameter quartz fiber. Resection was performed in a fiber-tissue contact mode on water-covered samples in a dish. The remnant particles were analyzed with respect to quantity and size by light microscopy. Additionally, soft tissue of porcine aortic vessels was examined for histologically detectable thermo-mechanical damage after continuous wave and Q-switched 2μm laser irradiation. An ablation rate of 36.7 ± 25.3 mg/min could be realised on highly calcified aortic leaflets, with 85.4% of the remnant particles being <6 μm in diameter. The maximum damaged area of the soft tissue was < 1 mm for both, cw and pulsed laser irradiation. This limits the expected collateral damage of healthy tissue during the medical procedure. Overall, the Q-switched Tm:YAG laser system showed promising results in cutting calcified aortic valves, transmitting sufficient energy through a small flexible fibre.},
   url = {http://dx.doi.org/10.1117/12.2033550},
   type = {Conference Proceedings},
year = { 2013}
}
J. Horstmann, and R. Brinkmann,
Non-contact photoacoustic tomography using holographic full field detection, Proc. SPIE, 2013. pp. 880007-880007-6.
Datei: 12.2033599
Bibtex: BibTeX
@inproceedings{Horstmann2013,
   author = {Horstmann, Jens and Brinkmann, Ralf},
   title = {Non-contact photoacoustic tomography using holographic full field detection},
   publisher = {Proc. SPIE},
   volume = {8800},
   pages = {880007-880007-6},
   note = {10.1117/12.2033599},
   abstract = {An innovative very fast non-contact imaging technique for Photoacoustic Tomography is introduced. It is based on holographic optical speckle detection of a transiently altering surface topography for the reconstruction of absorbing targets. The surface movement is obtained by parallel recording of speckle phase changes known as Electronic Speckle Pattern Interferometry. Due to parallelized 2-D camera detection and repetitive excitation with variable delay with respect to the image acquisition, data recording of whole volumes for Photoacoustic Imaging can be completed in times far below one second. The size of the detected area is scalable by optical magnification. As a proof of concept, an interferometric setup is realized, capable of surface displacement detection with an axial resolution of less than 3 nm. The potential of the proposed method for in vivo Photoacoustic Imaging is discussed.},
   url = {http://dx.doi.org/10.1117/12.2033599},
   type = {Conference Proceedings},
year = { 2013}
}
K. Bliedtner, E. Seifert, and R. Brinkmann,
Temperature induced tissue deformation monitored by dynamic speckle interferometry, in Studierendentagung , Universität zu Lübeck, 2013.
Datei: download
Bibtex: BibTeX
@inproceedings{Bliedtner2013,
   author = {Bliedtner, Kathrin and Seifert, Eric and Brinkmann, Ralf},
   title = {Temperature induced tissue deformation monitored
by dynamic speckle interferometry},
   booktitle = {Studierendentagung},
   publisher = {Universität zu Lübeck},
   type = {Conference Proceedings},
year = { 2013},
url = { http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.714.8862&rep=rep1&type=pdf}
}
J. Cordes, F. Nguyen, B. Lange, R. Brinkmann, and D. Jocham,
Damage of Stone Baskets by Endourologic Lithotripters: A Laboratory Study of 5 Lithotripters and 4 Basket Types, Advances in Urology , vol. 2013, pp. 6, 2013.
DOI:10.1155/2013/632790
Datei: 632790
Bibtex: BibTeX
@article{Cordes2013,
   author = {Cordes, Jens and Nguyen, Felix and Lange, Birgit and Brinkmann, Ralf and Jocham, Dieter},
   title = {Damage of Stone Baskets by Endourologic Lithotripters: A Laboratory Study of 5 Lithotripters and 4 Basket Types},
   journal = {Advances in Urology},
   volume = {2013},
   pages = {6},
   DOI = {10.1155/2013/632790},
   url = {http://dx.doi.org/10.1155/2013/632790},
   year = {2013},
   type = {Journal Article}
}
Y. Miura, R. Orzekowsky-Schröder, P. Steven, M. Szaszák, N. Koop, and R. Brinkmann,
Two-Photon Microscopy and Fluorescence Lifetime Imaging of Retinal Pigment Epithelial Cells under Oxidative Stress, Invest Ophthalmol Vis Sci , 2013.
DOI:https://doi.org/10.1167/iovs.13-11808
Bibtex: BibTeX
@article{Miura2013,
   author = {Miura, Y. and Huettmann, G. and Orzekowsky-Schroeder, R. and Steven, P. and Szaszak, M. and Koop, N. and Brinkmann, R.},
   title = {Two-Photon Microscopy and Fluorescence Lifetime Imaging of Retinal Pigment Epithelial Cells under Oxidative Stress},
   journal = {Invest Ophthalmol Vis Sci},
   note = {Miura, Yoko
Huettmann, Gereon
Orzekowsky-Schroeder, Regina
Steven, Philipp
Szaszak, Marta
Koop, Norbert
Brinkmann, Ralf
ENG
2013/04/06 06:00
Invest Ophthalmol Vis Sci. 2013 Apr 4. pii: iovs.13-11808v1. doi: 10.1167/iovs.13-11808.},
   abstract = {PURPOSE: The aim of this study was to investigate the autofluorescence (AF) of the RPE with two-photon microscopy (TPM) and fluorescence lifetime imaging (FLIM) under normal and oxidative stress conditions. METHODS: Porcine RPE-choroid explants were used for investigation. The RPE-choroid tissue was preserved in a perfusion organ culture system. Oxidative stress was induced by laser photocoagulation with frequency-doubled Nd:YAG laser (532 nm) and by exposure to different concentrations (0, 1, 10 mM) of ferrous sulfate (FeSO4) for 1 hr. At indicated time points after exposure, the tissue was examined with TPM and FLIM. Intracellular reactive oxygen species around the photocoagulation lesion were detected with chloromethyl-2'7'-dichlorofluorescein diacetate (CM-H2DCFDA). Melanosomes were isolated from RPE cells and its fluorescence properties were investigated under normal and oxidized conditions. RESULTS: Under normal condition, AF in RPE cells with TPM is mostly originated from melanosomes, which has a very short fluorescence lifetime (FLT) (mean=117 ps). Under oxidative stress induced by laser irradiation and FeSO4 exposure, bright granular AF appears inside and around RPE cells, whose FLT is significantly longer (mean=1388 ps) than the FLT of the melanosome-AF. Excitation and emission peaks are found at 710-750 nm and 450-500 nm, respectively. Oxidative stress increases the fluorescence intensity of the melanosomes but does not change their FLT. CONCLUSION: TPM reveals acute oxidative stress-induced bright AF granules inside and around RPE cells which can be clearly discriminated from melanosomes by FLIM. TPM combined with FLIM is a useful tool of live-cell analysis to investigate functional alterations of the RPE.},
   year = {2013}
}
Y. Miura, G. Hüttmann, M. Szaszák, K. Norbert, R. Orzekowsky-Schröder, and R. Brinkmann,
Two-photon Microscopy and Fluorescence Lifetime Analysis of Lipid Peroxidation Product in Photoreceptor Outer Segment and in Retinal Pigment Epithelial Cell, 2013. ARVO Meeting Abstracts.
Datei: ViewAbstract.aspx
Bibtex: BibTeX
@misc{Miura2013,
   author = {Miura, Y and Huettmann, G and Orzekowsky-Schroeder, R and Steven, P and Szaszák, M and Koop, N and Brinkmann, R },
   title = {Two-photon Microscopy and Fluorescence Lifetime Analysis of Lipid Peroxidation Product in Photoreceptor Outer Segment and in Retinal Pigment Epithelial Cell},
   publisher = {ARVO Meeting Abstracts},
   month = {March 26, 2012 },
   url = {http://www.abstractsonline.com/Plan/ViewAbstract.aspx?sKey=57630548-893d-4e45-9ddc-b6f547dd4ff0&cKey=d08a30bc-fe98-40a2-8a1c-1b171e4becd3&mKey=f0fce029-9bf8-4e7c-b48e-9ff7711d4a0e},
   year = {2013},
   type = {Poster}
}
R. Brinkmann, H. Iwami, J. Pruessner, V. Danicke, and Y. Miura,
Temperature-dependent response of retinal pigment epithelial cells to laser irradiation, Invest. Ophthalmol. Vis. Sci. , vol. 54, no. 6, pp. 1809-, 2013.
Datei: 1809
Bibtex: BibTeX
@article{Brinkmann2013,
   author = {Brinkmann, Ralf and Iwami, Hisashi and Pruessner, Joachim and Danicke, Veit and Miura, Yoko},
   title = {Temperature-dependent response of retinal pigment epithelial cells to laser irradiation},
   journal = {Invest. Ophthalmol. Vis. Sci.},
   volume = {54},
   number = {6},
   pages = {1809-},
   abstract = {PurposeSublethal thermal therapy of the retinal pigment epithelium (RPE) is discussed as a new prophylactic therapy for age-related macular degeneration. However, temperature-dependent RPE cell effects have not been well elucidated. We investigated the biochemical responses of RPE cells following sublethal to lethal thermal laser irradiation. MethodsPorcine RPE cells cultured in a dish (33mm) were heated with a Thulium laser (1.92{micro}m, 1-20W, 10s) over a spot of 3mm. Temperatures during irradiation were measured with thermocouples. Cell viability was examined using annexin-V, ethidium homodimer III and Hoechst 33342 for detecting apoptotic, necrotic and living cell, respectively, by using fluorescence microscopy for localization and flow cytometry for quantification. Secretion of vascular endothelial growth factor (VEGF) for 6h following irradiation on different temperatures was assessed with Elisa assay. In order to examine a protective effect of sublethal hyperthremia, the cells were heated up to 45C 24h prior to the exposure of 2 mM hydroxyl peroxide (H2O2) for 5 h. The involvement of TRPV (Transient Receptor Potential Vanilloid)-1 receptor, which is activated with temperatures > 43C, was investigated by adding capsazepin, a TRPV-1 inhibitor, before irradiation. ResultsCell apoptosis and necrosis was observed 24 h after irradiation with a central peak temperature [&ge;]52C. Fluorescence microscopy revealed apoptotic cells around the central necrotic area. VEGF secretion for 6h after irradiation was significantly increased at peak temperatures between 40 and 52C in a temperature dependent manner (max. 110%, p<0.05), whereas the total secretion decreases with temperatures > 52C. Pre-irradiation onto 45C significantly reduced H2O2-induced cell death after 5h compared to non-heated cells (total cell death: 15.6% to 10.2%, necrosis: 6% to 4 %, early apoptosis: 5.1% to 3.6%; p<0.01). These effects were not observed in the existence of capsazepin during laser irradiation. ConclusionsThe number of apoptotic and necrotic RPE cells increase at least over 24h following thermal laser irradiation. Sublethal temperatures between 40 and 52C seem to induce various cellular responses as VEGF secretion, which might be related to the protective effect against oxidative stress. Results with capsazepin suggest that TRPV-1 channel activation by hyperthermia is essential to exert this protective effect.},
   url = {http://abstracts.iovs.org/cgi/content/abstract/54/6/1809},
   year = {2013},
   type = {Journal Article}
}
S. Koinzer, M. Saeger, C. Hesse, L. Portz, S. Kleemann, K. Schlott, R. Brinkmann, and J. Roider,
Correlation with OCT and histology of photocoagulation lesions in patients and rabbits, Acta Ophthalmologica , pp. no-no, 2013.
Bibtex: BibTeX
@article{Koinzer2013,
   author = {Koinzer, Stefan and Saeger, Mark and Hesse, Carola and Portz, Lea and Kleemann, Susanne and Schlott, Kerstin and Brinkmann, Ralf and Roider, Johann},
   title = {Correlation with OCT and histology of photocoagulation lesions in patients and rabbits},
   journal = {Acta Ophthalmologica},
   pages = {no-no},
   abstract = {Purpose:  To examine spectral domain optical coherence tomographic (OCT) and histological images from comparable retinal photocoagulation lesions in rabbits, and to correlate these images with comparable OCT images from patients. Methods:  508 rabbit lesions were examined by HE-stained paraffin histology. 1019 rabbit lesions versus 236 patient lesions were examined by OCT, all at the time-points 1 hr, 1 week and 4 weeks after photocoagulation. We analysed 100 μm lesions (in humans) and 133 μm lesions (in rabbits) of 200 ms exposures at powers titrated from the histological threshold up to intense damage. Lesions were matched according to morphological criteria. Results:  Dome-shaped layer alterations, retinal infiltration by round, pigmented cells, outer nuclear layer interruption, and eventually full thickness retinal coagulation are detectable in histology and OCT. Horizontal damage extensions are found 1½ times larger in OCT. More intense irradiation was necessary to induce comparable layer affection in rabbit OCT as in histology. Restoration of the inner retinal layers is only shown in the OCT images. Comparable primary lesions caused more pronounced OCT changes in patients than in rabbits during healing. Conclusions:  Optical coherence tomographic images indicate different tissue changes than histologic images. After photocoagulation, they show wider horizontal damage diameters, but underestimate axial damage particularly during healing. Conclusions on retinal restoration should not be drawn from OCT findings alone. Retinal recovery after comparable initial lesions appears to be more complete in rabbit than in patient OCTs.},
   keywords = {histology
laser
optical coherence tomography
photocoagulation
retina
retinal healing},
   year = {2013}
}
A. Oepen, J. Horstmann, and R. Brinkmann,
Characterization of an Electronic Speckle Pattern Detection System, in Studierendentagung , 2013.
Bibtex: BibTeX
@inproceedings{Oepen2013,
   author = {van Oepen, Alexander and Horstmann, Jens and Brinkmann, Ralf},
   title = {Characterization of an Electronic Speckle Pattern Detection System},
   booktitle = {Studierendentagung},
   type = {Conference Proceedings}
}
E. Seifert, Y. Roh, A. Fritz, Y. Park, S. Kang, D. Theisen-Kunde, and R. Brinkmann,
Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model, 2013. pp. 880303-880303-6.
Datei: 12.2033560
Bibtex: BibTeX
@inproceedings{Seifert2013,
   author = {Seifert, Eric and Roh, Young-Jung and Fritz, Andreas and Park, Young Gun and Kang, Seungbum and Theisen-Kunde, Dirk and Brinkmann, Ralf},
   title = {Automatic irradiation control by an optical feedback technique for selective retina treatment (SRT) in a rabbit model},
   volume = {8803},
   pages = {880303-880303-6},
year = {2013},
   note = {10.1117/12.2033560},
   abstract = {Selective Retina Therapy (SRT) targets the Retinal Pigment Epithelium (RPE) without effecting neighboring layers as the photoreceptors or the choroid. SRT related RPE defects are ophthalmoscopically invisible. Owing to this invisibility and the variation of the threshold radiant exposure for RPE damage the treating physician does not know whether the treatment was successful or not. Thus measurement techniques enabling a correct dosing are a demanded element in SRT devices. The acquired signal can be used for monitoring or automatic irradiation control. Existing monitoring techniques are based on the detection of micro-bubbles. These bubbles are the origin of RPE cell damage for pulse durations in the ns and μs time regime 5μs. The detection can be performed by optical or acoustical approaches. Monitoring based on an acoustical approach has already been used to study the beneficial effects of SRT on diabetic macula edema and central serous retinopathy. We have developed a first real time feedback technique able to detect micro-bubble induced characteristics in the backscattered laser light fast enough to cease the laser irradiation within a burst. Therefore the laser energy within a burst of at most 30 pulses is increased linearly with every pulse. The laser irradiation is ceased as soon as micro-bubbles are detected. With this automatic approach it was possible to observe invisible lesions, an intact photoreceptor layer and a reconstruction of the RPE within one week.},
   url = {http://dx.doi.org/10.1117/12.2033560},
   type = {Conference Proceedings}
}

2012

F. Treumer, A. Klettner, J. Baltz, A. Hussain, Y. Miura, R. Brinkmann, J. Roider, and J. Hillenkamp,
Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process, Exp Eye Res , vol. 97, no. 1, pp. 63-72, 2012.
DOI:10.1016/j.exer.2012.02.011
Bibtex: BibTeX
@article{Treumer2012,
   author = {Treumer, F. and Klettner, A. and Baltz, J. and Hussain, A. A. and Miura, Y. and Brinkmann, R. and Roider, J. and Hillenkamp, J.},
   title = {Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process},
   journal = {Exp Eye Res},
   volume = {97},
   number = {1},
   pages = {63-72},
   note = {1096-0007
Treumer, F
Klettner, A
Baltz, J
Hussain, A A
Miura, Y
Brinkmann, R
Roider, J
Hillenkamp, J
Journal Article
England
Exp Eye Res. 2012 Apr;97(1):63-72. doi: 10.1016/j.exer.2012.02.011. Epub 2012 Feb 22.},
   abstract = {The purpose of this study was to investigate release of matrix metalloproteinases (MMP) 2 and 9 during retinal pigment epithelium (RPE) wound healing after Selective Retina Therapy (SRT) with laser energy levels below and above the threshold of RPE cell death. Following exposure to SRT using a prototype pulsed Nd:YLF laser with energies of 80-180 mJ/cm(2) fresh porcine RPE-monolayers with Bruch's membrane and choroid were cultured in modified Ussing chambers which separate the apical (RPE-facing) and basal (choroid facing) sides of the RPE monolayer. Threshold energy for RPE cell death and wound healing were determined with calcein-AM viability test. Inactive and active forms of MMP 2 and 9 were quantified within tissue samples and in the culture medium of the apical and basal compartments of the Ussing chamber using gelatine zymography. Laser energies of 160-180 mJ/cm(2) resulted in cell death within 1 h while 120-140 mJ/cm(2) resulted in delayed death of exposed RPE cells. All cells survived 80 and 100 mJ/cm(2). Laser spots healed within 6 days after SRT accompanied by a transient vectorial increase of MMPs. SRT with 180 mJ/cm(2) increased active MMP 2 by 1.9 (p < 0.05) and 1.6 (p < 0.05) fold in tissue and basal compartments, respectively, without alterations in the apical compartment. Pro-MMP 2 levels were also significantly increased in all compartments (p < 0.05). Release of MMP 9 was not altered. Laser energy below the threshold of RPE cell death did not alter the release of MMP 2 or 9. The findings suggest that the release of active MMP 2 on the basal side of the RPE during wound healing following SRT may address age-related pathological changes of Bruch's membrane with a potential to slow degenerative macular ageing processes before irreversible functional loss has occurred.},
   keywords = {Animals
Cell Death
Cell Survival
Choroid/*enzymology/pathology
Diffusion Chambers, Culture
Fluoresceins/metabolism
*Laser Therapy
Lasers, Solid-State
Macular Degeneration/enzymology/pathology/*surgery
Matrix Metalloproteinase 2/*metabolism
Matrix Metalloproteinase 9/*metabolism
Organ Culture Techniques
Retinal Pigment Epithelium/*enzymology/pathology
Sensory Thresholds
Swine
Wound Healing/*physiology},
   ISSN = {0014-4835},
   DOI = {10.1016/j.exer.2012.02.011},
   year = {2012},
   type = {Journal Article}
}
K. Schlott, S. Koinzer, L. Ptaszynski, M. Bever, J. Roider, and R. Brinkmann,
Automatic temperature controlled retinal photocoagulation, Journal of Biomedical Optics , vol. 17, no. 6, pp. 061223, 2012. SPIE.
DOI:10.1117/1.JBO.17.6.061223
Datei:
Bibtex: BibTeX
@article{Schlott2012,
   author = {Schlott, Kerstin and Koinzer, Stefan and Ptaszynski, Lars and Bever, Marco and Baade, Alex and Roider, Johann and Birngruber, Reginald and Brinkmann, Ralf},
   title = {Automatic temperature controlled retinal photocoagulation},
   journal = {Journal of Biomedical Optics},
   volume = {17},
   number = {6},
   pages = {061223},
   keywords = {AutoPhoN},
   year = {2012}
}