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ABSTRACT   

The aim of this work is the creation of segmented data set consisting of optical coherence tomography (OCT) scans, 

which were taken of brain tumor tissue with different tumor infiltration rates. In an ongoing clinical study more than 140 

human brain samples with different infiltration grades were recorded ex vivo with two OCT systems, a spectral domain 

OCT system and a swept-source OCT system that uses a 1310 nm Fourier domain mode locked laser. The histological 

analysis of the recorded samples builds the ground truth for labeling the corresponding OCT B-Scans. The segmented 

data set gained from this process will be used to train a classification algorithm, taking into account structural and optical 

properties such as the attenuation coefficient. In the future the classification algorithm together with a microscope 

integrated OCT system will be used for the in vivo identification of brain tumors as a guidance tool for the surgeon to 

increase tumor resection efficiency.  
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1. INTRODUCTION  

In Germany approximately 43,000 new oncological cases of disease in the central nervous system are diagnosed every 

year. For the majority of patients the microsurgical tumor resection is a therapeutic option. The extent of this resection 

and the tumor histology correlate with the survival expectation, especially in glioma surgery [1]. However, the detection 

of residual tumor during neurosurgery remains an important challenge: There is a low inherent contrast between 

malignant tissue and the healthy tissue during the resection. Some tumors such as glioblastoma, are highly invasive and 

lack a true histological border to the normal brain tissue [1]. Prior work has shown that OCT has the potential to detect 

brain tumors by evaluating optical properties compared to healthy brain tissue [2-5]. Based on these findings, en face 

maps can be created for the surgical guidance during tumor resection with the disadvantage that the depth information 

gained through OCT is lost [3].  

The aim of this work is to preserve the depth information through a labeled OCT dataset, which allows the depth 

resolved tissue classification based on the attenuation coefficient and structural features [6]. The labeled OCT dataset 

was created by locally analyzing histological sections from different brain tissue samples and detecting correlations 

between the OCT scan and the histological sections. 

2. MATERIALS AND METHODS 

2.1 Data Acquisition 

For the data acquisition of ex vivo malign brain tissue two OCT systems were used: 1. A spectral domain (SD) OCT 

system (Callisto by Thorlabs GmbH, Dachau Germany) with an imaging wavelength 930 nm, a lateral resolution of 8 



 

 
 

 

 

 

µm and axial resolution of 7 µm 2. A Fourier domain mode locked MHz-OCT system (OMES by Optores GmbH, 

München Germany) with an imaging wavelength at 1310 nm, lateral resolution of 30 µm and axial resolution of 15 µm. 

During the resection of 20 malign brain tumors (mostly glioblastoma multiforme) on average 8 samples per tumor were 

extracted by a neurosurgeon with a Yasargil forceps. The samples were taken from the main tumor tissue itself as well as 

the tumor borders to healthy tissue. The samples of the tumor borders were taken after the tumor resection was defined 

as a complete resection by the neurosurgeon based on the intraoperative white light and the fluorescence information 

from the surgical microscope. Each sample was placed into an agar cuboid prior to the imaging, which fixed the position 

of the sample and gave the sample a certain shape, which eased the creation of H&E histological sections and the later 

structural classification (see Figure 1). The sample size varied from 9 to 75 mm³. The imaging of each prepared tissue 

sample with the two OCT systems was performed within 15 minutes after the extraction by the neurosurgeon. 

Additionally during the scanning with the SD-OCT a spectator camera acquired an en face image.  

 

 
Figure 1 Extraction of a tissue sample with a Yasargil forceps (top). Brain sample during ex vivo scanning (red rectangle is field of 

view of the Thorlabs Callisto OCT, 10 red stripes represent the positions where the sample was cut, middle). Example of an H&E 

stained histological section from the sample above (bottom)  

After the imaging each sample was fixated with 4.5% formalin in order to stop the tissue decay and was sent to the 

neuropathology for tissue staining and histological analysis. 10 H&E stained histological sections were then created from 

each sample. The sample was cut according to individual cutting instructions, which were based on the red cutting lines 

on camera en face image (see Figure 1). The distance between each cut was 0.1 mm and the orientation was the same as 



 

 
 

 

 

 

in the acquired B-scans. The histological sections were then segmented by a neuropathologist, who used the following 

labels: White matter (0%, 0-30%, 30-60%, >60% tumor infiltration), grey matter (0%, 0-30%, 30-60%, >60% tumor 

infiltration), vessel, necrosis, coagulation, edema, cyst, bleeding and connective tissue. The result of the data acquisition 

per extracted tissue sample were 1 C-scan for each of the two OCT systems, an en face camera image and 10 labeled 

H&E stained histological sections.  

 

 

2.2 Registration of the Datasets 

The OCT C-scans were registered onto the en face camera image in order to be able to find the corresponding B-scans to 

the histological sections. This step allows the transfer of the label, which were set by the neuropathologist, from the 

histological sections onto the corresponding OCT B-scans. The registrations were achieved through a landmark based 

affine approach of the en face projections of the C-scans on to the en face camera image. The en face projections of the 

C-scans I(x,y) were calculated through the mean intensity projection along the depth axis z of the C-scan V(x,y,z). 
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Figure 2 shows an example of the en face projection calculated from the C-scans of the two OCT systems. 

 

Figure 2 En face projections of the C-scans acquired by the MHz-OCT system (left) and the SD-OCT system (right). 

 

The landmark based affine approach was used, because the images vary in rotation, translation, scaling and modality. 

The former makes it much more difficult to find corresponding features automatically, which is why the landmarks were 

manually set. An affine transformation between two point clouds can be described through the following equation [7]: 
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p1 and p2 are the two point clouds, which contain N points. The points are represented through the coordinates (xi,n, yi,n, 

1)T and A is the affine transformation matrix. In order to calculate the transformation, the calculations for x and y 

component of p2 are separated. The x component can be determined by the following equation: 

   𝑥2,𝑛 = (𝐴11 𝐴12 𝐴13) (

𝑥1,𝑛

𝑦1,𝑛

1
) = 𝑥1,𝑛𝐴11 + 𝑦1,𝑛𝐴12 + 𝐴13     (3) 

In order to solve this equation for the components of A, a least squares approach was chosen. This approach minimizes 

the error E(𝐴11, 𝐴12, 𝐴13) calculated through the sum of squared differences: 
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2
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The spatial derivatives of Eq. 4 were calculated for the determination of the minimum of the error E, which results in the 

following system of equations: 
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This system of equations can now be solved for the components of A. The same steps can be carried out for the y 

component of p2, which leads to the following systems of equation: 
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Since the camera image had the largest FOV, it was used as a reference and the en face images of the OCT systems were 

registered onto that image. This allowed the determination of the transformation between the two OCT C-scans later on. 

The en face camera image is acquired through an off the shelf software (Thorimage by Thorlabs GmbH), which imprints 

the FOV of the SD-OCT onto the camera image as a red rectangle (see Figure 1). The first step to calculate the 

transformation matrix A1, which represents the affine transformation from the SD OCT enface image to the camera en 

face image, is the detection of the corner points of the red rectangle in the camera image. These points are then registered 

on the corner points of the SD-OCT en face image. The transformation matrix A2, which describes the affine 

transformation from the MHZ-OCT en face image onto the camera image, was calculated with manually set points on 

both images. The affine transformation from the SD-OCT to the MHZ-OCT can be determined by the following 

equation: 

 

𝐀𝟑 = 𝐀𝟏(𝐀𝟐)−𝟏
       (7) 

  

 

 

 

 

 



 

 
 

 

 

 

 

 

 

3. RESULTS 

 
Since the position of the histological section in the original sample is roughly known through the cutting lines on the 

camera image (see Figure 1), the affine transformations between the en face images were determined. It is now possible 

to transform the cutting lines from the camera en face image on to the en face images of the SD-OCT and the MHZ-

OCT, which is shown in Figure 3. 

 

 
Figure 3 Transformation of the cutting lines from the camera en face image (top) on to the en face projections of the two OCT systems 

(SD-OCT in the bottom left, MHz-OCT in the bottom right). 

 
This step enabled the extraction of B-scans from the two OCT datasets, which correspond to the histological sections 

defined by the cutting lines (see Figure 4 and Figure 5). 

 

 
Figure 4 B-scan representing the first cutting line extracted from the SD-OCT C-scan. 



 

 
 

 

 

 

 

 
Figure 5 B-scan representing the first cutting line extracted from the MHZ-OCT C-scan. 

 
After extracting the corresponding B-scans, the labels set by the neuropathologist are now manually transferred from the 

histological section onto the B-scans, in order to create the desired data sets for the classification. Figure 6 shows one 

result of this process for the B-scan of the SD-OCT. It is important to note, that only regions, which can be identified 

with a high certainty, were segmented in the B-scan. Transitions zones are hard to identify and a false segmentation 

would ruin the classification results later on. 

 



 

 
 

 

 

 

 
Figure 6 First histological section of the sample from Figure 1, segmented by the neuropathologist (top):  grey matter (green), white 

matter with edema (blue), transition zone (yellow). Corresponding B-scan from the SD-OCT C-scan with transferred labels (bottom). 

 

4. OUTLOOK AND DISCUSSION 

It was shown, that it is possible to create a labeled dataset of OCT B-scans. At the moment not all the data was put 

through this process, since the labeling of the histological section takes a lot of time. In the end the data set will consist 

of up to 2500 segmented OCT B-scans with 15 different labels. The method of transferring the labels from the 

histological sections on to the OCT B-scans must be developed further, since the manual approach is very time 

consuming and is prone to human error. The implementation of an automatic label transferring program on the other 

hand is very difficult, because the scale and the surface structure of the samples sometimes change during the transport 

and preparation process for the creation of the histological sections. The gained labeled OCT dataset will be used in the 

future as a ground truth for depth resolved supervised classification algorithms in order to detect the different tumor 

infiltration zones. Intensity based, structural analysis and optical properties will be used for the classification. 
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