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Abstract

Background: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis
has drawn great attention in recent years.

Methodology/Principal Findings: We now developed a novel method using non-invasive two-photon microscopy to
simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as
collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse
cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of
pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/
C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently
labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM). Intravital TPM was
performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence
using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse
imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport
of individual cells. Cells immigrated within 1–5.5 min into the vessel lumen. Mean velocities of intrastromal corneal
immune cells were around 9 mm/min and therefore comparable to those of T-cells and macrophages in other mucosal
surfaces.

Conclusions: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune
cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon
microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently
tumor cells with lymphatic vessels under close as possible physiological conditions.

Citation: Steven P, Bock F, Hüttmann G, Cursiefen C (2011) Intravital Two-Photon Microscopy of Immune Cell Dynamics in Corneal Lymphatic Vessels. PLoS
ONE 6(10): e26253. doi:10.1371/journal.pone.0026253

Editor: Joseph El Khoury, Massachusetts General Hospital and Harvard Medical School, United States of America

Received February 8, 2011; Accepted September 23, 2011; Published October 20, 2011

Copyright: � 2011 Steven et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by the German Research Foundation (DFG: SFB 643 [TP B10] to CC); Interdisciplinary Center for Clinical Research (IZKF) Erlangen (A9
to CC); Sektion Kornea, Deutsche Ophthalmologische Gesellschaft (to PS); University of Luebeck, Medical Faculty Grant (TP3 to PS). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: philipp.steven@uk-koeln.de

. These authors contributed equally to this work.

Introduction

Lymphatic vessels are essential for maintaining the homeostasis

of tissue-fluids, transport of antigen and migration of immune

cells under physiological and pathological conditions. However,

following organ or tissue transplantation, lymphangiogenesis

triggers the rejection of transplanted organs or tissues and

thereby limits transplant survival [1,2]. Furthermore, the

formation of lymphatic vessels during tumor growth increases

the risk of tumor metastasis to adjacent lymph nodes and beyond

[3]. The precise molecular and cellular interactions governing

these important cell-vessel interactions are only poorly under-

stood until now.

Lymphangiogenesis research lacked behind hemangiogenesis

research for several decades and only relied on electron

microscopy due to the absence of specific markers for tissue

staining. Since specific markers for lymphatic vascular endothe-

lium such as LYVE-1, Podoplanin and Prox1 were introduced in

the late 1990s, lymphangiogenesis research has made great

progress and now includes ex vivo fluorescence and confocal

microscopy on tissue sections and in-vitro assays (tube forming

[4], transwell [5] or proliferation assays [6]) to investigate the

structure of lymphatic vessels and the interaction with their

environment. Nevertheless cellular dynamics such as migration of

immune cells or tumor cells into lymphatic vessels and further

migration within the vessels cannot be investigated in fixed tissue.

Recently Pflicke and Sixt demonstrated for the first time, that

isolated DCs migrate through preformed gates into lymphatic

vessels in an in situ murine ear sheet model [7]. However, such ex

vivo models or organ cultures have particular limitations in terms

of perfusion and innervation and the in vivo situation might differ

significantly. Therefore high-resolution intravital imaging tech-
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niques are desirable for the detection and analysis of cell-cell and

cell-vessel dynamics under conditions as close to physiology as

possible.

The cornea of the eye is a physiologically transparent and

avascular tissue [8], consisting out of densely packed collagen

fibrils with almost no scattering properties. This tissue is perfectly

suitable for microscopic investigations and also easily accessible in

the living animal. Within the physiologically avascular cornea

hem- and lymphangiogenesis can be stimulated using the model

of suture induced corneal inflammation. Through this, invading

blood and lymphatic vessels are applicable for experimental

analysis and manipulation under controlled conditions [1] [6]

[9,10,11]. The transparent cornea further allows to image

immune cells such as corneal dendritic cells (DCs) [12,13] or

intravascular leucocytes at the corneal limbus or the iris [13].

These studies however focused on cell-blood vessel interaction or

migration of DCs rather than cell-cell or cell-lymphoid vessel

interaction and required labeling of cells and or use of

intravascular dextran injection. In these studies the use of

epifluorescence in vivo microscopy or confocal microscopy also

limits the observer’s ability for spatial orientation and depth

determination or relies on the subsequent ex vivo detection of the

structures [14].

In 1990 Denk et al. introduced two-photon microscopy for

intravital high-resolution imaging in large tissue depths [15]. Since

then numerous studies have investigated cell-cell interactions in

lymph nodes and spleen by intravital two-photon microscopy.

Using two-photon microscopy Yaniv et al. were also able to

demonstrated lymphatic vessels in a transgenic zebrafish [16]. As

data on mammals are not available up to this point, a model for

specifically and simultaneously imaging lymphatic vessels and all

key-players in an immune reaction (immune cells, blood vessels,

connective tissue) is highly desirable.

The aims of this study were to develop an experimental

setup that enables detecting lymphatic vessels, blood vessels,

immune cells and surrounding tissue components simulta-

neously and to analyze cell-lymphatic vessel interactions in

vivo. In particular, we hypothesize that in a living animal

immune cells within the inflamed cornea demonstrate active

migration patterns and use openings of lymphatic vessels to

emigrate from the cornea.

Results

Imaging the lymphatic vessel network within the corneal
microenvironment

Initially we used two-photon microscopy to analyze the

morphology of corneal lymphatic vessels and their vicinity ex

vivo. Therefore we induced the ingrowth of pathological blood

and lymphatic vessels by placing sutures intrastromally into the

corneas of BALB/c mice. Ex vivo two-photon microscopy enabled

a simultaneous detection of tissue autofluorescence and ALEXA-

488 LYVE-1 stained lymphatic vessels and allowed to depict the

entire corneal microenvironment consisting of epithelium, corneal

stroma with collagen fibrils, nerve fibers, lymphatic vessels and

blood vessels. Recording image stacks through ex vivo prepared

whole mounted corneas with 1 mm steps demonstrated invading

lymphatic vessels that sprouted at the limbus (junction between the

epithelium of conjunctiva and cornea) into the corneal stroma and

that were primarily located below the basement membrane while

extending towards the central cornea (Fig. 1, Video S1).

Design and development of intravital two-photon setup
As cellular velocities vary under changing conditions such as

temperature [17] and oxygen saturation (own unpublished

findings) our setup was designed to control these factors using a

custom made animal holder equipped with a heating mat and by

monitoring blood oxygen levels, pulse and breath rate (Fig. 2A).

Artifacts during intravital observations based on pulse synchronal

movement of the eye globe were minimized by deep anesthesia

and immobilization of the cornea by a specific clamp (Fig. 2B).

Remaining slight drift artifacts were compensated by semiauto-

mated alignment using the piezodriven objective holder and the

motor driven object table and by limiting recording times to

15 minutes. Together with a software based realignment of the

image stacks or series high resolution data sets were generated.

The setup used enabled to anesthetize an individual mouse for up

to 5 hours and perform several intravital examinations including

image stacks or videos to screen the entire cornea and detect rapid

cellular movements. Repeated recording of the same area of

interest lead to very limited photobleaching and by using

excitation energies below 40 mW no phototoxic effects occurred.

Nevertheless, if photobleaching effects emerged the ALEXA 488

Figure 1. 3D reconstruction of the lymphatic arcades ex vivo. A) At the limbus, the junction between the epithelium of conjunctiva and
cornea (dotted line), lymphatic vessels (green) invade into the corneal stroma (blue) and are primarily located directly below the basement
membrane extending towards the central cornea (B). Nerve fibers stretching into the stroma are also visible (B, arrows).
doi:10.1371/journal.pone.0026253.g001

Two-Photon Microscopy of Corneal Lymphatics
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fluorophore bleached faster than the intrinsic tissue autofluores-

cence of e.g. epithelial cells. Signals from sutures and stromal

collagen remained stable even if excitation energies were tuned to

80 mW and above.

Intravital specific visualization of lymphatic vessels
In vivo injection of ALEXA-488 conjugated LYVE-1 antibodies

into a stromal pocket of a previously vascularized cornea was

followed by drainage of the dye by the ingrown lymphatic vessels

and specific adherence of the green-fluorescing antibodies to the

lymphatic endothelial cells (Fig. 2C). The green-fluorescing

antibody stained lymphatic vessels up to their finest protrusions

and enabled a three dimensional reconstruction of the vessel

lumen. As shown in Figure 3 lymphatic vessels were not detectable

in non-injected mice (Fig. 3B), isotype-control injected mice

(Fig. 3C) and limbal regions of normal non-sutured mice (Fig. 3D)

in vivo. However, follow-up ex vivo immunohistochemistry of

non-injected and isotype-control injected corneae that were

previously sutured (Fig. 3B and C) revealed the existence of

lymphatic vessels in the pre-examined areas of these specimens

(Fig. 3E and F).

Corneal sutures induce an upregulation of proinflammatory

chemokines with consecutive influx of inflammatory lymphocytes,

corneal edema and increased conjunctival blood flow [18]. Also,

corneal sutures resemble the preferential location for T-cells and

macrophages for up to 4 weeks post surgery [19]. Therefore, areas

in close proximity to the sutures were chosen for real-time imaging

in our experiments. Sutures excited a specific strong autofluores-

cence signal that enabled an easy detection as landmarks within

the area of interest (Fig. 3 B, E, F and Video S1).

Intravital detection of immune cell migration in relation
to lymphatic vessels

2D time series were generated by repeatedly recording image

sections of the same tissue plain. Within this pilot study recording

times of up to 15 minutes/series were chosen.

2D time series demonstrated extensive cellular migration within

the corneal stroma close to but also far from lymphatic and blood

vessels. The rapid movement of intravascular erythrocytes

prevented to identify single cells and resulted in a specific motion

artifact (continuous band of fluorescence with darker stripes) that

furthermore documented intact perfusion during the experiments

(Fig. 3A, Video S2 and S3). Migrating cells within the extracellular

matrix (ECM) demonstrated a strong cytoplasmic autofluores-

cence signal that could be detected by the second and the third

channel (excitation 450–500 nm, 500–580 nm) in our setup.

These cells featured cellular sizes of 10–15 mm and an amoeboid

migration pattern with average velocities of 9.5 mm/min (max.

speed: 54 mm/min; Tab. 1). Numerous cells obviously followed

preformed paths through the corneal stroma and interacted with

other cells (Video S2). In addition cells with diameters of up to

30 mm featuring dendrites that protruded far into the periphery

were present. These cells showed no migration over the periods

recorded but were constantly contacted by mobile cells (Video S2).

Intravital visualization of cell migration across lymphatic
vessel walls

Besides ECM patrolling cells we were also able to observe the

transmigration of highly motile single cells migrating into LYVE-1

labeled lymphatic vessels through presumed gates that demon-

strated an enhanced fluorochrome signal (Fig. 4A–E, Video S3,

Tab. 2).

These cells featured a leading protrusion that entered the

lymphatic vessel and the rest of the cell then squeezed through the

gate, hereby following closely the path of the preceding cell. The

entire process of transmural migration took 1–5.5 minutes at

average velocities of 11.4 mm/min (Fig. 5). Velocities before

transmigration averaged 8.9 mm/s and 10.4 mm/min after

transmigration (Tab. 2 and Fig. 6). These cellular transmigration

activities demonstrated the first unequivocal in vivo evidence of

corneal lymphatic vessel function to facilitate transmural immune

cell migration. In addition, some cells located closely to the gate

did not enter the vessel, indicating a selective entry mechanism of

individual cells., Following transmigration into the lymphatic

vessel immigrated cells remained intravascular for periods of 3–

7 minutes (overall video duration 12–16 minutes) and no afferent

transport to the periphery was observed following the entry of the

cell. These intravascular cells demonstrated a diameter of

Figure 2. Experimental setup for intravital 2-photon microscopy. A) 1: intraperitoneal anesthesia/infusion pump; 2: monitoring blood
oxygen, pulse and breath rate (by MouseOx; 3: ventilation by tracheotomy followed by intubation; 4: body temperature control; Inset: custom made
animal holder. B) Reduction of artificial pulsatile movements by a custom made eye globe clamp. C) Scheme for intravital visualization of specifically
stained lymphatic vessels and autofluorescent blood vessel and tissue in the murine cornea. Intrastromally injected LYVE-1/Alexa 488 antibody binds
specifically to suture induced lymphatic vessels. For non-contact intravital observation a 206 immersion objective dipped into artificial tear gel is
used.
doi:10.1371/journal.pone.0026253.g002

Two-Photon Microscopy of Corneal Lymphatics
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Figure 3. Intravital visualization of lymphatic vessels in the subepithelial stroma of the cornea. A) Intravital image of a lymphatic vessel
in an experimentally vascularized murine cornea. The fluorochrome labeled lymphatic vessel (open arrow) is shown in green and autofluorescence of
epithelium, blood vessel (white arrow) and tissue cells is shown in red, surrounding collagen fibrils in blue. B) Intravital image of unstained
vascularized cornea. Tissue autofluorescence reveals individual cells (red) and blood vessels (red, white arrows). Some cells feature autofluorescence
in all detection channels (yellow-white, arrowheads). Lymphatic vessels cannot be visualized by autofluorescence excitation. C) Intravital image of
isotype control injected cornea. Individual cells (red) and blood vessels (white arrows) are visible. Large cells feature green fluorescence deriving from
intracellular Alexa488 fluorochrome. Lymphatic vessels are not labeled by isotype controls. D) Intravital autofluorescence image of normal cornea at
the limbus. A limbal blood vessel is visible (white arrows) and few individual cells (red). E) Ex vivo confocal image of specimen B) following
immunohistochemistry (IHC). CD31+ blood vessels (red; white arrows) and Lyve-1+/CD312 lymphatic vessels (green, open arrows) are visible. F) Ex
vivo confocal image of specimen C) following IHC. CD31+ blood vessels (red; white arrows) and Lyve-1+/CD312 lymphatic vessels (green, open
arrows) are now visible. G) 3D-reconstruction of a 2-photon image stack through the vascularized cornea. The signal of the fluorochrome labeled
lymphatic vessels is virtually reconstructed and depicted by surface rendering (green). Surrounding collagen fibrils are displayed in blue, epithelial
cells and the blood vessel (dashed line and arrow) in red. H) Higher magnification and different angle of G). Within the lymphatic vessel an Alexa488+

presumed macrophage (arrow) is depicted in yellow as an overlay of Alexa488 fluorophore (green) and autofluorescence signal (red, diameter:
16.7 mm). Images recorded with acquisition times of 13.4s/image.
doi:10.1371/journal.pone.0026253.g003

Two-Photon Microscopy of Corneal Lymphatics
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approximately 16 mm and featured both a fluorochrome- and an

autofluorescence-derived signal (Fig. 3E) implicating that these

cells either accumulated the injected antibody within their

cytoplasm or were specifically labeled with the LYVE-1 antibody.

These assumed macrophages were also detected throughout the

corneal stroma with focal accumulations close to the sutures (not

shown). In contrast to transmigrating cells, other individual cells

within the lymphatic vessels demonstrated rapid dislocations with

maximum velocities of 224 mm/min (Fig. 4F–H, Tab. 3).

Presence of immune cells in the vascularized cornea
To further characterize migrating and resting cells in this model

vascularized murine corneae were stained using a panel of

different antibodies (Fig. 7). The corneas revealed a dense

accumulation of CD45+ leucocytes in close proximity to the

lymphatic vessels. These cells were mainly CD11b+ [11]

macrophages and to a lesser extend CD11c+ dendritic cells in

concordance to earlier studies of the inflamed cornea [20,21]. Few

MHCII+ antigen-presenting cells (APCs) were present and

featured a dendritic shape. CD4+ T-cells were also located in

close relation to the lymphatics, but limited in number.

Discussion

Lymphatic vessels play a pivotal role in physiological and

pathological conditions such as tissue-fluid homeostasis, immuno-

logical defense of infections, transplant rejection and tumor cell

migration. To understand the function of resident or newly formed

lymphatic vessels besides molecular mechanisms, cell-cell and cell-

vessel interactions need to be analyzed in detail. Hereby, imaging

lymphatic vessels in vivo together with blood vessels and the

surrounding microcompartment is a mandatory requirement to

analyze any dynamic interaction e.g. during inflammation or

tumor growth. In contrast to the facile detection of blood vessels,

the main limitation of visualizing lymphatics in vivo is the lack of

contrast due to morphological characteristics of the vessels. Other

than blood vessels that consist of three layers (intima, media,

adventitia), lymphatic capillaries consist of a single cell layer

(endothelium), which is anchored by collagen fibrils in the

extracellular matrix. In confocal laser scanning microscopy the

delicate walls of the vessels excite only very weak autofluorescence

and give only little contrast that is additionally outshined by

surrounding collagen fibrils. In addition, the transparent lymph

fluid does not contribute to the detection of these vessels. By

combining injected fluorochrome-labeled antibodies into a stromal

pocket with the detection of two-photon excited tissue autofluo-

rescence, previously undetectable lymphatic vessels and adjacent

tissue specific structures as well as individual cells became visible in

vivo. In contrast to previously used fluorescing dextrans, this

approach features long term labeling of the lymphatic vessel

morphology in vivo, even after post-experimental tissue prepara-

tion [22]. It also allows analyzing individual cells within the optical

clear lumen of the vessels. In addition, injection of anti-LYVE1

antibody into a stromal pocket is not limited to a particular mouse

strain but can be applied to any transgenic mouse model

established for immunological research.

Our setup enabled studying cellular dynamics within the model

of suture induced neovascularization of the cornea repeatedly over

Table 1. Migration velocities of intrastromal immune cells.

Migration (n = 50)

Speed max. (mm/min): 54.0

Speed min. (mm/min): 0

Speed avg. (mm/min): 9.5

In each recorded time series a number of immune cells was traced and their
average migration speed was calculated (number of migrating cells: 50; speed
max: maximal distance a single cell migrated within a minute in the corresponding
time series; speed avg: average of all migration velocities measured in this time
series).
doi:10.1371/journal.pone.0026253.t001

Figure 4. Intravital visualization of immune cell migration into and within a lymphatic vessel in a pathologically vascularized
cornea. A–E) Lymphatic vessel (green), crossing blood vessel (red), corneal epithelium (red) and stromal collagen fibrils (blue) are imaged
simultaneously. An individual cell (arrow) migrates into the lymphatic vessel via a presumed gate (dotted line) that demonstrates an enhanced LYVE-
1-antibody signal (compare to video S3). F–H) Rapid intravascular transport of a single cell (dotted circle).
doi:10.1371/journal.pone.0026253.g004

Two-Photon Microscopy of Corneal Lymphatics
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several hours. Observations included migration of immune cells

along restricted paths, which may be facilitated by preformed

tunnels [23,24] or partly along protrusions of resident dendritic

cells. Cellular velocities of stromal immune cells measured in our

experiments (9.5 mm/min at avg.) are comparable to T-cell

velocities measured in isolated non-inflamed lymphnodes [17],

T-cell velocities within an infiltrating tumor model [25] or

macrophage velocities in a wound healing model of medaka fish

[26]. As immunohistochemistry demonstrated only few T-cells in

our model that were far outnumbered by macrophages, migrating

cells are likely to be macrophages. As autofluorescence emitted by

these cells is based on intrinsic fluorophores such as NAD(P)H and

macrophages and also dendritic cells contain lysosomes that

contribute to the autofluorescence signal, we selectively detected

the different autofluorescence spectra of NAD(P)H and lysosomes

in different channels in our setup. By analyzing such autofluores-

cence spectra and intensity differences, we were able to optical

characterize cellular and also non-cellular structures as published

previously e.g. for erythrocytes, connective tissue, macrophages

[27] and stem cells [28].

The finding of normal cellular velocities in this study affirms the

clinical appearance of corneae with only little edema and normal

conjunctival blood flow at the time points used as inflammation

was shown to increase velocities of immune cells significantly [25].

Besides increasing cellular velocities inflammation also increases

cellular migration from the inflamed tissue via lymphoid vessels by

upregulating leukocyte adhesion factors such as ICAM-1, VCAM-

1 and E-selectin [5]. By this, an increased cellular turnover within

the inflamed tissue is facilitated and accompanied by transmigra-

tion of immune cells via lymphatic vessel walls. In situ real-time

dynamics of transmural migration of dendritic cells (DCs) into

lymphatic vessels have recently been recorded by Pflicke and Sixt

for the first time. Within their ex vivo ear sheet model, injected

isolated DCs migrated into lymphatics by preformed pores [7].

However, in our experiments we observed the immigration of

immune cells into lymphoid vessels for the first time in vivo

(Fig. 4A–E, Video S3) and also recorded and analyzed the

transport of immune cells within lymphatic vessels (Fig. 4F–H). As

these intravascular dynamics are extremely unlikely to be based on

active cellular migration, the data implicates a passive transport

via the lymph flow. Only limited data is available on lymph flow

velocities in mice. Measurements range from 84 mm–81 mm/min,

partly much faster than the velocities measured in our experiments

[29,30]. Nevertheless, the data available is based on studies of the

lymphatic vessel system of tail and limb. To our knowledge no

studies on lymph flow velocities in the vascularized cornea of mice

have been conducted so far and velocities in the corneal stroma

that consists of densely packed collagen fibrils might differ

significantly from lymph flow velocities in connective tissues of

other regions.

Figure 5. Velocity characteristics of the transmigrating cells. Cell tracking from first contact of leading cell protrusion with the lymphatic
vessel until last contact with rear protrusion after passage. Cells 1–6 demonstrate velocities with min/max of 0–23 mm/min. One cell (no. 7) shows
rapid migration velocities with a maximum of 41.6 mm/min. This cell was the only cell transmigrating from the lymphoid vessel into the stroma.
Transmigration process required 1–5.5 min.
doi:10.1371/journal.pone.0026253.g005

Table 2. Transmigration velocities of immune cells into
lymphatics.

Transmigration (n = 7)

Speed max. (mm/min): 41.6

Speed min. (mm/min): 0

Speed avg. (mm/min): 11.4

Speed avg. before transmigration (mm/min): 8.9

Speed avg. after transmigration (mm/min): 10.4

Cells that migrated through the vessel wall into the lumen of the lymphatic
vessel were traced in three separate time series and migration speed before,
during and after transmigration was analyzed. (number of transmigrating cells: 7;
speed max: maximal distance a single cell migrated within a minute in the
corresponding time series; speed avg: average of all migration velocities measured
in this time series).
doi:10.1371/journal.pone.0026253.t002

Two-Photon Microscopy of Corneal Lymphatics
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Together with previous findings that lymphoid vessels in the model

of suture induced corneal inflammation increase the risk of

immunological transplant rejection following corneal transplantation,

the demonstrated migration and intravascular transport of immune

cells and the continuous staining pattern proves the functionality of

these newly formed lymphatic vessels and their ability of draining

foreign matter such as injected dyes or even antigen.

Based on the setup and the data presented future experiments

are planned to target two important issues: 1. How do

immunosuppression and anti-angiogenesis influence cellular and

vascular dynamics in connection to the level of inflammation? 2.

The development of a setup that allows detecting and analyzing

lymphatics and cellular dynamics without the necessity of

manipulation such as dye injection as a requirement for studies

in humans.

Overall, this method paves the way for new intravital analyses of

interactions of the immune system and lymphatic vessels as well as

tumor cells and lymphatic vessels which has been of major

scientific relevance in the last years [31].

Materials and Methods

Mice and anesthesia
Six to eight weeks-old female Balb/C mice (Charles River

Germany, Sulzfeld, Germany) were used. All animals were treated

in accordance with the ARVO Statement for the Use of Animals

in Ophthalmic and Vision Research. For surgical procedures,

mice were anaesthetized using an intraperitoneal injection of

Ketamine (Ketanest S, Parke-Davis, Germany) and Xylazine

(Rompun, Bayer, Germany).

Suture induced corneal inflammation assay
We used the mouse model of suture induced inflammatory

corneal neovascularization as described previously [6]. Briefly,

mice were put under general anesthesia and 3 intrastromal 11-0

nylon sutures (70 mm diameter needles; Serag-Wiesner, Naila,

Germany) were placed in the corneal stroma with two incursions

extending over 120u of corneal circumference each. After two

weeks corneal neovascularizations extended towards the sutures

and animals were investigated by means of ex vivo and intravital

two-photon microscopy.

Corneal immune cell staining
14 days after suture placement, corneas were harvested and

fixed in acetone for 15 min at 4uC. After three washing steps the

specimens were blocked with 2% BSA in PBS for 15 min and

afterwards with FC-Block (CD12/CD36; Invitrogen, USA) for

30 min at 4uC.

The specimens where stained with the primary antibodies over

night at 4uC. We used LYVE-1 (rb a ms, AngioBio, USA;

preconjugated with FITC or with Cy3 goat a rabbit, Dianova,

Germany) for lymphatic vessels, CD4 (rb a ms, Santa Cruz, USA)

for T-cells, CD11b (FITC rt a ms, Serotec, USA) for tissue

macrophages, CD11c (FITC hamster a ms, AbD serotec, UK) for

dendritic cells, MHC II (PE rat a ms I-A/I-E; BD Pharmingen,

USA) for antigen presenting cells and CD45 (FITC rat a ms, BD

Pharmingen, USA) as leukocyte marker. According isotype

controls: normal-rat (Santa Cruz, USA); normal-hamster (Santa

Cruz, USA); normal-rabbit (Abcam, USA). At day two the

secondary antibody was applied for 45 min at room temperature.

Intravital two-photon microscopy
We used a commercially available, modified two-photon

microscope (DermaInspect JenLab GmbH, Neuengönna, Ger-

Figure 6. Average velocities of transmigrating cells correlated to transmigration process. Classification: before transmigration: track until
first contact of leading protrusion with the lymphatic vessel wall, transmigration: track from first until last contact of migrating cell with the lymphatic
vessel wall, after transmigration: track from last contact of migrating cell with lymphatic vessel wall. No values could be obtained for cells no. 3+7
before transmigration and cells 5–7 after transmigration, due to transmigration-limited recording periods.
doi:10.1371/journal.pone.0026253.g006

Table 3. Intravascular transport of immune cells.

Intravascular transport (n = 3)

Speed max (mm/min): 224.4

Speed min. (mm/min): 0

Speed avg. (mm/min): 101.5

Intravascular cells were traced and velocities were calculated in two separate
time series. (number of transported cells: 3; speed max: maximal distance a single
cell was transported within a minute in the corresponding time series; speed avg:
average of all transportation velocities measured in this time series).
doi:10.1371/journal.pone.0026253.t003

Two-Photon Microscopy of Corneal Lymphatics
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many). The DermaInspect consisted of a solid-state, mode-locked

80 MHz Ti:sapphire laser (MaiTai, Spectra Physics, Darmstadt,

Germany) with a tuning range of 710–920 nm and a mean laser

output of .900 mW at 800 nm which delivered pulses with a

width of approximately 150 fs to the sample. Setting of the

excitation power and beam steering were done by a computer-

controlled beam attenuator, a shutter, and a two axis galvoscan-

ner. For in-vivo imaging of comparatively large image volumes

with a high resolution a 206objective (Plan-Apochromat DIC 20/

1.0 W objective, Carl Zeiss GmbH, Jena, Germany), which was

focused by a piezodriven holder, was chosen. Larger scale motions

of the sample in x- and y-directions were performed by computer-

controlled stepper-motors (Owis GmbH, Staufen, Germany). After

passing through a specially designed main beam splitter with high

transmission between 350 nm und 710 nm (Layertec, Mellingen,

Germany) the fluorescence was detected in parallel in four spectral

ranges (380–450 nm, 450–500 nm, 500–580 nm, 580–680 nm) by

a combination of dichroic beam splitters (ST440CCXR,

HCBS495 und ST580DCXR, AHF analysentechnik AG, Tübin-

gen), a blocking filter (E680SP, AHF analysentechnik AG,

Tübingen) and four photomultipliers (R1924 and R1925,

Hamamatsu, Herrsching, Germany). Three of the four spectral

ranges (channel 1–3) were used in these experiments. Channel 1

mainly detected autofluorescence and second-harmonic genera-

tion (SHG) signals from collagen, channel 2 detected autofluores-

cence signals from cells and structures except collagen and channel

3 detected the fluorescing antibody.

Prior to examination, a LYVE-1 antibody (AngioBio Co., Del

Mar, CA, USA) or the according isotype control (Rabbit IgG,

Abcam, USA) was conjugated with the fluorochrome Alexa 488

(Alexa Fluor 488 Monoclonal Antibody Labeling Kit, Invitrogen,

Paisley, UK) and a volume of 5 ml was injected into a stromal

pocket in the prevascularized murine cornea. Intravital examina-

tion was conducted 24 hours after intrastromal antibody injection.

Custom made animal holder
For the intravital investigations, a custom made animal holder

was used to secure and orientate the mice (Fig. 2A+B). The animal

holder was equipped with a heating device to maintain normal

body temperature and additional monitoring of the blood oxygen

level, pulse and breath rate was facilitated by a murine pulse

oximeter system (MouseOx, Starr Life Sciences Corp., Pittsburgh,

PA, USA). The animals were anesthetized by constantly infusing

0.2–0.3 ml/h of a solution of 300 ml fentanyl, 400 ml midazolame,

200 ml domitor and 3.5 ml sodiumchloride via an intraperitoneal

catheter. Controlled ventilation was conducted via tracheotomy

followed by intubation at settings of 180–250 strokes/min and

180–220 ml/stroke (MouseVent, Harvard Apparatus, Hugo Sachs

Elektronik, Germany), maintaining SO2 levels of 90–98%.

The secured, heated, ventilated and monitored mouse was

placed beneath the two-photon microscope and the eye was

covered with an artificial tears gel (Vidisic Gel, Bausch &Lomb/

Dr. Mann Pharma, Berlin, Germany) to bridge the working

distance of the water immersion objective used.

Figure 7. Presence of antigen presenting cells and lymphocytes near corneal lymphatic vessels. Numerous leucocytes are located within
the vascularized cornea (A–C: CD45), consisting of CD11b+ macrophages (D–F), CD11c+ dendritic cells (G–I), MHCII+ antigen-presenting cells (J–L)
and CD4+ T-cells (M–O); Isotype controls (P), Magnification 2006.
doi:10.1371/journal.pone.0026253.g007
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Image analysis
Image stacks of the vascularized cornea were made at 730 nm

excitation wavelength and comprised up to 80 images and volumes

up to 2006200670 mm. To obtain information about the cellular

dynamics in living animals, time series were made in one image

plain, consisting of up to 80 images (one image every 4.4, 11.7 or

13.4 seconds). Image stacks and series were analyzed using Imaris

software 6.5 (Bitplane, Switzerland). Datasets of three spectral

ranges were used for analysis and color coded as follows: 380–

450 nm: blue, 450–500 nm: red, 500–580 nm: green. For

statistical analysis of cellular dynamics, individual cells were

tracked manually using Imaris and tracks were generated

automatically. Minimum speed in each time series was 0, as at

least one cell showed a rest of motility at a given timepoint, e.g.

during cell-cell interaction. Maximum speed resembles the

maximum dislocation of a single cell in one time series.

Supporting Information

Video S1 3D-reconstruction of an image stack display-
ing intravital imaging of lymphatic vessels and immune
cells in the cornea, recorded by 2-photon microscopy.
Intrastromal sutures (bright red) induce lymphatic vessels (green)

within the superficial stroma of the cornea, below the corneal

epithelium (red). By injecting an Alexa 488-conjugated anti-

LYVE-1-antibody into an intrastromal pocket, the draining

lymphatics are labeled by the antibody and imaged by 2-photon

microscopy to the point of their finest branches. Blue: collagen

fibrils (grid spacing 10 mm).

(MOV)

Video S2 Time series on corneal lymphatic vessels
induced by intrastromal sutures detected by intravital 2-
photon microscopy. Autofluorescent immune cells (red)

migrate rapidly within the corneal stroma and around anti-

LYVE-1-antibody labeled lymphatic vessels (green) and stationary

cells with long dendrites (arrows). Some cells (red spheres) follow

presumed preformed paths (grey lines). (Time series 15 min 11 s,

acquisition time 13.4s/image).

(MOV)

Video S3 Intravital 2-photon microscopy of suture-
induced lymphatic vessels within the cornea. By using a

2-photon microscope, equipped with a four channel detector,

epithelial cells, stromal collagen, individual immune cells, blood

vessels and fluorochrome-conjugated antibody labeled lymphatic

vessels can be investigated simultaneously. In this time series an

individual cell (arrow) migrates into the lymphatic vessel via an

opening in the vessel wall that is depicted by enhanced antibody

labeling and consecutive enhanced fluorescence signal. (Time

series: 16 min 46 s, acquisition time 11.7s/image).

(MOV)
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