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geting molecular markers and pathways implicated in cancer cell growth is a promising avenue for de-
ng effective therapies. Although the Ki-67 protein (pKi-67) is a key marker associated with aggressively
rating cancer cells and poor prognosis, its full potential as a therapeutic target has never before been
sfully shown. In this regard, its nuclear localization presents a major hurdle because of the need for
ellular and intranuclear delivery of targeting and therapeutic moieties. Using a liposomally encapsulated
uct, we show for the first time the specific delivery of a Ki-67–directed antibody and subsequent light-
ed death in the human ovarian cancer cell line OVCAR-5. Photoimmunoconjugate-encapsulating lipo-
(PICEL) were constructed from anti–pKi-67 antibodies conjugated to fluorescein 5(6)-isothiocyanate, as
toactivatable agent, followed by encapsulation in noncationic liposomes. Nucleolar localization of the
s was confirmed by confocal imaging. Photodynamic activation with PICELs specifically killed pKi-67–
e cancer cells both in monolayer and in three-dimensional (3D) cultures of OVCAR-5 cells, with the
dy TuBB-9 targeting a physiologically active form of pKi-67 but not with MIB-1, directed to a different
e. This is the first demonstration of (a) the exploitation of Ki-67 as a molecular target for therapy and (b)
c delivery of an antibody to the nucleolus in monolayer cancer cells and in an in vitro 3D model system.
of the ubiquity of pKi-67 in proliferating cells in cancer and the specificity of targeting in 3D multi-
In view

cellular acini, these findings are promising and the approach merits further investigation. Cancer Res; 70(22);
9234–42. ©2010 AACR.
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geted agents that block or interrupt specific pathways
tely involved in tumor growth and cancer cell prolifer-
hold promise for effective patient-customized treat-
The choice of the molecular target around which to
molecularly targeted therapies then becomes a key

. In that context, the nuclear protein Ki-67 (pKi-67) is
pelling candidate. It is strongly expressed in proliferat-
lls (1, 2) and is an established prognostic indicator for
sessment of cell proliferation in biopsies from cancer
ts (3). Despite the important role of pKi-67 as a diag-
hree challenges have limited its suitability as
er therapy: (a) lack of targeting moieties that
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ically recognize the physiologically active form of pKi-
lack of effective vehicles for intracellular delivery that
vely transport the targeting moiety to the appropriate
llular site; and (c) the inability to link the targeting
nism with an externally activatable intervention strat-
r additional specificity that neutralizes the active state
-67.
address these challenges using a multifunctional
scence and therapy) nanotechnology platform for in-
ular delivery of TuBB-9, a recently developed mono-
antibody (mAb; ref. 4) that specifically recognizes a
logically active form of pKi-67, in combination with a
activatable agent in a photochemistry-based approach
photodynamic therapy (PDT). PDT involves the exci-
of light-activatable chemicals to trigger site-specific
chemistry for localized damage via active molecular
s, because of which very specific target damage can
hieved (5–7). In this study, we show the first anti-
argeted inactivation of a nuclear protein in large cell
ations. This was made feasible through nanotechnolo-
ived liposomal delivery of an antibody. We subse-
ly present the first evidence that inactivation of the
ration marker pKi-67 leads to cell death in prolifera-
ells only. Figure 1 shows the proposed schema of the
ing strategy. TuBB-9 antibody is conjugated to a PDT

to yield a photoimmunoconjugate (PIC), which is
encapsulated into noncationic PEGylated liposomes
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vide PIC-encapsulating liposomes (PICEL). These are
up by ovarian cancer cells on incubation by a com-
on of endocytic and liposome fusion processes. A frac-
f the liposomes release the mAb into the cytoplasm of
ncer cell. Within 24 hours, the mAb relocalizes into
cleus, consistent with earlier reports using single-cell
ons (8). The putative relocalization mechanism in-
the cotransport of the mAb with newly synthesized
protein, or binding to pKi-67 during mitosis after
own of the nuclear envelope. Light irradiation trig-
nactivation of the Ki-67 protein and cell death of
arian cancer cells.
somes are self-assembling spherical vesicles made of
and have been extensively investigated for drug deliv-
cancer and noncancer applications (9). Several liposo-
rugs have already been approved for clinical use. The
that have been encapsulated in liposomes range from
therapeutic drugs such as doxorubicin (10) to photo-
table agents such as benzoporphyrin derivative mono-
1), a Food and Drug Administration (FDA)–approved
gent. Liposomes make it possible to intracellularly
r large macromolecule drugs to their site of action,
gh the delivery of an antibody via encapsulation has
been reported. Cationic liposomes have been investi-
for delivery of proteins to cells (12, 13) but initiate

e. Light irradiation inactivates the Ki-67 protein and is followed by cell de
e inflammatory response and neurotoxicity (14). Here,
e noncationic PICELs for intracellular delivery of the

dules
condu
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TuBB-9 and MIB-1 recognizing pKi-67. TuBB-9 and
are directed against different epitopes of pKi-67 and
ize pKi-67 fractions, which seem to regulate different
r functions. These mAbs also exhibit different sub-
r staining patterns, probably caused by differential
e masking (4).
vious studies have shown that the fraction of pKi-67
ized by TuBB-9 colocalizes with components of the
transcription machinery and binds to the promoter
of the ribosomal genes in the nucleoli (4). Light inac-
n after TuBB-9–FITC microinjection led to a profound
tion of rRNA synthesis (15). In contrast, the rRNA syn-
machinery was independent of pKi-67 regulation when
ere microinjected with the pKi-67–recognizing mAb
. These results instigated the current investigation
we sought to exploit this reported specific inactivation
i-67 in single cells for cancer cell killing using PDT,
allows for an external trigger of cell death. PDT is

proved treatment modality for various malignant and
alignant diseases and is FDA approved as first-line
ent for age-related macular degeneration. PDT in-
light-based activation of a nontoxic chemical called

sensitizer to produce cytotoxic free radicals (5–7).
his study we use a recently developed in vitro three-
sional (3D) model of disseminated ovarian microno-

the ovarian cancer cells.
1. Envisioned schema showing proposed mechanism of nanotechnology-mediated subcellular antibody delivery and subsequent light inactivation
7, leading to ovarian cancer cell death. TuBB-9 antibody is conjugated to fluorescein 5(6)-isothiocyanate (FITC) to yield a PIC, which is then
ulated into noncationic PEGylated liposomes to provide PICELs. (MIB-1–FITC conjugates are also encapsulated in liposomes and used as
but are not shown in the schema.) These PICELs are internalized by OVCAR-5 cells, and a fraction of the TuBB-9–FITC conjugates are released
cytoplasm. Within 24 h, the conjugates relocalize into the nucleus. Proposed mechanisms for this relocalization are the cotransport of the
as a biologically relevant research platform that is
cive to longitudinal imaging and quantitative assessment

Cancer Res; 70(22) November 15, 2010 9235
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tment response (16–18). This model system is adapted
the pioneering work of Bissel and colleagues (19) in
cancer research, in which it was shown that cells over-
a bed of Matrigel with the proper composition of stro-

ctors will form multicellular 3D acini. These 3D models
d to powerful insights into the role of tissue architecture
signaling and tumor growth behavior that would not be
le in traditional monolayer cultures (20–22). However,
wer of such systems to serve as more physiologically
t reporters of treatment response has been underused.
ample, such 3D systems recapitulate challenges for drug
ry that are similar to those encountered during i.p.
istration of drugs in intra-abdominal metastatic disease.
model system generates 3D ovarian nodules that are
in size to the micrometastatic tumor nodules studding
ritoneal surfaces in vivo.
g this ovarian cancer 3D model system and monolayer
lture, we show that epitope-specific PDT induced killing
CAR-5 cells with PICELs constructed from anti–pKi-67
dies conjugated to FITC, as a photoactivatable agent,
ed by encapsulation in noncationic liposomes. This

dynamic activation with PICELs synthesized with the PA), w

analys
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they w
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dy TuBB-9 specifically killed pKi-67–positive cancer cells.

rials and Methods

odies and labeling
mouse mAbs against pKi-67, MIB-1, and TuBB-9

generated at the Research Center Borstel as de-
d by Bullwinkel and colleagues (4) and Cattoretti
olleagues (23). For conjugation of the antibodies to
(fluorescein 5(6)-isothiocyanate, Sigma), FITC
mol/L in DMSO) and antibody (6.58 μmol/L in so-

carbonate buffer) were mixed in a molar ratio of 20:1.
olution was incubated at room temperature on a
for 2 hours, and the labeled protein was purified
NAP-5 Sephadex column (GE Healthcare). After elu-
ith TBS [10 mmol/L Tris-HCl (pH 8.2), 150 mmol/L
the labeled antibodies were concentrated with Mi-
tubes (Millipore) and redissolved in TBS (pH 7.4).

m the absorbance A(λ), the protein concentration
and the average amount of fluorochromes per anti-
(η) were calculated using the formula shown below.
ITC to antibody ratios varied from 1.3 to 2.3 molecules
C per antibody over 10 conjugation reactions.

cprot ¼ Að280 nmÞ � 0:31 �Að495 nmÞ
1:4

mg

mL
;

� ¼ 2:77 �Að495 nmÞ
Að280 nmÞ � 0:31 �Að495 nmÞ

ration of PICELs
somes encapsulating antibody conjugates were pre-
by adapting the procedure described by Sengupta

lleagues (24). Briefly, the lipids (phosphatidylcholine,
terol, and phosphatidylethanolamine), each separately

of ice
minut

r Res; 70(22) November 15, 2010
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ved in chloroform, were mixed together in a molar ratio
0.2 and placed in a glass vial; chloroform was evaporat-
m the vial under a stream of nitrogen. The residual
form was removed by placing this vial in a desiccator
vacuum for 1 hour. An aqueous solution of the anti-
ITC conjugate was then added at 65°C, a temperature
r than the highest value of the fluid-solid transition
rature (Tm) for the lipids in the mixture. The solution
cubated for 1 hour at 65°C. The resulting dispersion of
amellar vesicles was extruded through 200-nm-diameter
rbonate membranes by using a mini-extruder system
ti Polar Lipids) to form unilamellar vesicles. The result-
CELs were then analyzed by dynamic light scattering
and transmission electron microscopy (TEM). Unen-
lated antibody-FITC conjugates were removed by gel
on, and the concentrations were determined by fluores-
and absorbance spectroscopy.

ines and culture conditions
an ovarian carcinoma cells NIH:OVCAR-5 (OVCAR-5)
urchased from Fox Chase Cancer Center (Philadelphia,
here they were characterized by microsatellite marker
is. The cells were grown in RPMI 1640 supplemented
0% FCS, 2% L-glutamine, and 50 units/mL penicillin/
omycin. Human lung fibroblast cells MRC-5 were pur-
from the American Type Culture Collection, where
ere characterized by cytochrome oxidase I assay and
se sequence-tagged repeat analysis. MRC-5 cells
grown in Eagle's MEM supplemented with 10% FCS,
glutamine, and 50 units/mL penicillin/streptomycin.
vitro experiments were carried out with cell lines that
assaged within 6 months after initiation of the cell cul-
onolayer cells were plated for irradiation experiments
mm plastic dishes (BD Biosciences). For the 3D tissue
e, OVCAR-5 cells were plated on the 14-mm glass area
mm glass-bottomed dishes (MatTek). First, the glass
e was coated with 80 μL of growth factor–reduced
el (BD Biosciences). The plating was fulfilled on ice
se Matrigel solidifies rapidly at room temperature.
30 minutes of incubation, 200 μL of OVCAR-5 were
on the Matrigel bed in a concentration of 18,000
L. The culture dishes were then incubated at 37°C
w for cell adhesion on the gel. After 1 hour, the medi-
lume in each dish was brought to 2 mL, containing 2%
el. The 3D culture was maintained with RPMI 1640
mented with 2% Matrigel.

cytometric determination of the Ki-67 status
flow cytometric analysis, cells were incubated for
utes in 0.05% trypsin/EDTA. 3D cell cultures were
ted up to 30 minutes in 0.25% trypsin/EDTA. Cell
sion aliquots (500 μL, 2 × 106 cells/mL) were fixed
minutes on ice by addition of 500 μL of 4% ice-cold
rmaldehyde to a final concentration of 2%. After ad-
of 2 mL of ice-cold PBS, cells were collected by cen-
tion (400 × g for 5 minutes), resuspended in 500 μL

-cold PBS/0.25% Triton X-100, and incubated for 5
es on ice. Cells were then washed by adding 2 mL
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cold PBS followed by centrifugation at 400 × g. Sub-
tly, the cells were then resuspended in 500 μL PBS/
ovine serum albumin (BSA) containing the primary
dy MIB-1–FITC at a concentration of 2 μg/mL and
ted for 1 hour on ice in the dark. After addition of
of ice-cold PBS, cells were centrifuged at 400 × g and
resuspended in 500 μL PBS/0.5% BSA containing
mL propidium iodide (to stain DNA) and 50 μg/mL
. Cells were incubated for an additional 30 minutes at
nd then analyzed on a BD FACSCalibur flow cytometer.

rive cell cycle fractions G1-G0, S, and G2-M from DNA
rams, we took care to include only single cells in our

an Op
(Ophir

viability.

acrjournals.org
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is and to exclude G0-G1 doublets, which were discrimi-
using pulse height versus pulse width of the propidium
signal (25).

iation of monolayer and 3D culture cells
s were irradiated with an argon laser (Innova 100,
ent) at 488 nm, which is in close proximity to the
ption maximum of FITC of ∼494 nm. The beam
idened to a spot of 3.5-cm diameter with an irradi-
f ∼70 mW/cm2. Irradiation energy was measured with

hir Vega power meter with a photodiode sensor
Optronics).
2. Confocal microscopy
s subnuclear localization of
67–FITC antibody conjugates,
sequent light irradiation causes
cancer cell death in monolayer
. A, confocal laser scan images
AR-5 cells 24 h after incubation
BB-9–FITC, L-TuBB-9–FITC,
IB-1–FITC. Left, the free
–FITC antibody conjugate
liposomal encapsulation is
eant to the cell membrane. Both
constructs L-TuBB-9–FITC
) and L-MIB-1–FITC (right)
the FITC-labeled antibody
tes intracellularly (scale bars,
, which then localize inside the
i (arrows). B, viability of OVCAR-
following irradiation with a
laser (5 J/cm2) is assessed by
d MTT assay. Only cells that are
ed with L-TuBB-9–FITC show a
ant reduction in viability over
ter irradiation. Cells incubated
MIB-1–FITC constructs and
d with the same energy of light
egligible loss of viability.
e control samples, which
of cells without any constructs
h light irradiation, cells with
-9–FITC constructs but no light,
with the free TuBB-9–FITC
y conjugate, show no significant
Cancer Res; 70(22) November 15, 2010 9237
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photon fluorescence imaging of in vitro
dules
ges were acquired using an inverted Olympus FV1000
microscope equipped with Spectra-Physics DeepSee
phire laser tuned to 750 nm to excite endogenous fluo-
ce of flavin chemical species in 3D micronodules. A
jective water immersion objective (Olympus) was used
uire high-resolution images through the Matrigel bed.
lumes were collected by acquiring image stacks in
axial steps. Two non-descanned detectors collected
tofluorescence emission using violet (440–490 nm)
reen (510–550 nm) band-pass filters. The final
s and depth stack movies were processed using
J. This label-free autofluorescence imaging allows
rturbative imaging of samples without administra-
f exogenous contrast agents and allows cultures
maintained for continued growth and treatment
nse studies. In displayed images, contrast was
ced using hi-lo lookup table in ImageJ software.
photon image data were smoothed with a 2-pixel
ian filter.

iability assay for monolayer and 3D culture cells
assess cell viability in monolayer cell cultures, the
assay, which measures mitochondrial dehydrogenase
y, was used. Assessment of cytotoxic response in
culture model posed an additional challenge, as

nversion products from traditional MTT and MTS
were found to adhere to the Matrigel substrate,
ting reliable reporting of viability by these methods.
ercome this, we developed a quantitative fluorescence
g–based approach using the LIVE/DEAD Cytotoxicity
nvitrogen). Culture dishes of 3D nodules were
ashed with PBS and then incubated at 37°C for

show the 3D cellular structure of the acinus. Scale bar, 15 μm. A z-scan
mentary Movie.
nutes with 2 μmol/L calcein AM and 4 μmol/L ethi-
homodimer-1 (Invitrogen) diluted in PBS before

OVCA
lent. C

r Res; 70(22) November 15, 2010

American Association Copyright © 2010 
cancerres.aacrjournals.Downloaded from 
g. Following incubation, images of the calcein fluo-
ce emission (as a reporter of viability) and the ethi-
bromide fluorescence emission (as a reporter of cell
) were obtained using the appropriate excitation/
on filters on an Axiovert 100 TV inverted microscope
) at several spatial fields in each treated culture dish.
s were captured with a charge-coupled device camera
tifire XI, Optronix) and saved as 12-bit TIFFs for later
is. Using a custom batch process routine developed
MATLAB software package (MathWorks), sets of

s were analyzed in high throughput to report the
fluorescence signal from the calcein and ethidium
de channels with the ratio of calcein fluorescence
al fluorescence (calcein plus ethidium) as a reporter
bility. The ratio was computed in this manner for
atment groups and normalized to the no-treatment

h the acinus from which one section is shown is attached as
ent.

lts

s deliver pKi-67 antibodies intracellularly and
riggers cell death of ovarian cancer cells
PICEL constructs consisting of FITC-labeled anti–
antibodies and a lipid bilayer were characterized

S to be in a size range of approximately 180 nm
upplementary Fig. S1). TEM images of polymer con-
g liposomes prepared similar to PICELs showed a
ical morphology of the liposomal constructs. There
o attempt to vary the size of the PICELs.
subcellular localization of PICELs in OVCAR-5 cells
stablished by confocal laser scanning microscopy
) following a 24-hour incubation of PICELs with
3. Multiphoton image of OVCAR-5 3D acini. The larger field of view on the left is a representative sample of 3D acini obtained by differential
ence contrast microscopy. Scale bar, 100 μm. Magnified area shows a cross-section of a single acinus captured by two-photon fluorescence
opy with excitation tuned to 750 nm to excite endogenous flavins in OVCAR-5. The autofluorescence image reveals outlines of individual
R-5 cells at concentrations of 20 nmol/L FITC equiva-
LSM showed the fluorescence for both mAbs (TuBB-9
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IB-1) to be nucleolar, coincident with the putative
site (Fig. 2A).
investigate if cell death was triggered by PDT, the
R-5 cells incubated with PICELs for 24 hours were
ted with an argon laser at 488 nm with 5 J/cm2.
analysis showed a dramatic 95% decrease in cell
ty with L-TuBB-9–FITC at 72 hours, whereas no
cant effect on viability in cells incubated with L-
–FITC was observed. Cell viability decrease was time
dent, from 35% 24 hours after irradiation to 20% 48
after irradiation and to 5.15% 72 hours after irradi-
(Fig. 2B). The controls show that irradiation of the
ICEL-free TuBB-9–FITC antibody has no significant

ce on cell viability. Cell viability was unaffected by
tion of cells without any conjuga

forme

adiation.

acrjournals.org
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tion without light. All experiments were done during
ase of OVCAR-5 cell growth, as shown in Supple-
ry Fig. S2. During this phase, the percentage of cells
tain positive for pKi-67 is the highest (26).

ltures show loss of spherical structure and
se in cell death
evaluate efficacy of Ki-67–targeted PDT in a more
ically relevant system, we conducted treatment
se studies in a 3D in vitro model of ovarian cancer.
wn in Fig. 3, OVCAR-5 cells grown on GFR Matrigel
d multicellular 3D acini. Supplementary Movie S1
a multiphoton z-scan through an acinus. Although
d from the same cell line used in monolayer experi-

te or TuBB-9 PICEL ments, molecular targets are differentially expressed when
4. OVCAR-5 cells grown in
ures show loss of acinar
re and a progressive
e in cell death following
nt with L-TuBB-9–FITC
cts. A, the pKi-67
ion in 3D cultures is lower
at in monolayer cultures as
ed by flow cytometry in
lls. B, time-lapse images of
ures incubated with
-9–FITC constructs and
d with 5 J/cm2. The
tion of the 3D acinar
re is clearly seen 70 h
ht irradiation. Scale bars,
. C, normalized live/dead
3D OVCAR-5 cells after
on with a 488-nm laser.
/dead ratio decreases
antly in cells incubated
TuBB-9–FITC 72 h
Cancer Res; 70(22) November 15, 2010 9239
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ysiologic architectural cues are restored. Flow cyto-
measurements established that >90% of the cells in
layer cultures are pKi-67 positive (Fig. 4A), whereas
culture only 40% of the cells were positive for pKi-
ich is similar to the in vivo situation (27, 28). The
sion of pKi-67 in fewer cells in 3D models compared
onolayer cells has been described before (29, 30) and

st likely the result of differential gene expression in-
by differential architectural cues in the two geome-
DT-mediated cell death triggering in 3D cultures was
igated by incubating the cultures with PICELs con-
g 20 nmol/L equivalent of FITC for 48 hours followed
-nm illumination with 5 J/cm2. Time-lapse imaging
0 hours showed a striking loss of acinar structure,
was most prominent 20 to 40 hours after irradiation
B; Supplementary Movies S2–S5). This disaggregation
acini was only observed after L-TuBB-9–FITC treat-

ion show negligible loss of viability following incubation with both
i-67 liposomal constructs and light irradiation.
targeting the active form of pKi-67 and not with the
constructs. The live/dead ratio, normalized to un-

such a
advan

r Res; 70(22) November 15, 2010
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d controls, decreases to 0.26 72 hours after irradiation
cultures incubated with L-TuBB-9–FITC (Fig. 4C). As
nolayer, the liposomal MIB-1–FITC construct shows
nificant cytotoxicity, nor did the free TuBB-9–FITC
dy or cells without any conjugate or cells treated with
9 PICELs without light irradiation.

gainst pKi-67 kills selectively proliferating cells
cificity of this approach for pKi-67–positive cells was
in 80% confluent human lung fibroblasts (MRC-5),
only a small population of cells expresses pKi-67. Flow
etry staining of pKi-67 in MRC-5 cells showed that
rown to confluency expressed pKi-67 in <20% of cells
A), whereas nonconfluently grown cells were ∼80%
ve for pKi-67 (Supplementary Fig. S3A). To test the
ent efficacy on low Ki-67–expressing noncancer cells,
ubated MRC-5 cells with the PICELs and determined
ability after light irradiation. Interestingly, the MRC-5
rown to confluency showed no significant effect on cell
ty with either of the constructs (Fig. 5B). In contrast,
nfluent cells showed a decrease in cell viability to
fter 48 hours when incubated with L-TuBB-9–FITC
lementary Fig. S3B).

ssion

s study establishes the first antibody-targeted inactiva-
f a nucleolar protein in large populations of living cells
rovides the first evidence that inactivation of the pro-
ion marker pKi-67 leads to cell death specifically in
rating cells. Most protein knockdown methods inter-
ith the synthesis pathway of the protein (31, 32); how-
ere, we show a new approach for targeting the protein
Fabrication of the noncationic PICELs made the deliv-
antibodies into the cell cytoplasm possible, leading ul-
ly to a relocalization of the mAbs to the actual pKi-67
side the nucleus and particularly in the nucleoli. This
r relocalization has been described earlier (8), but the
mechanism is not known and needs to be further in-
ated. Our findings show the specificity of the photo-
vation, as photoactivatable FITC is delivered to the
li of the cells with both antibodies, but only pKi-67 tar-
with TuBB-9 constructs leads to cell death. The possi-
activation mechanism involves photo–cross-linking of
tibody with the target protein or binding partners. Sin-
ygen-dependent cross-linking after irradiation of fluo-
n has been reported before and leads to oxidation
thionine side chains (15, 33, 34). The radius of
ation of light-irradiated FITC is in the range of a few
eters (35) and explains the high specificity of the
ed effects. Although FITC has a low triplet state quan-
ield and thus a very low propensity for PDT (singlet
quantum yield of 3% in aqueous solution), its conju-
to antibodies apparently alters its photophysical prop-
such that it can be an effective PDT agent similar to
hite and indocyanine green (35, 36). In a first study
5. Treatment of a noncancer cell line, human lung fibroblast cells
), shows the specificity of the approach for Ki-67–positive
ating cells. A, flow cytometry for Ki-67 status in 80% confluent
cells reveals that only a small fraction of cells is pKi-67 positive.
lity of MRC-5 cells after irradiation with a 488-nm laser (5 J/cm2) is
ed by standard MTT assay. Confluent cells with low pKi-67
s the one presented here, the use of FITC offers several
tages, such as easy conjugation to antibodies and its
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hilic nature diminishes problems that may arise due
aggregation. It has been widely used for specific light
ation of proteins in living cells (35, 37). FITC has an
tion maximum of 490 nm, and although this may be
uited for cancers of the skin, it is not ideal for deep
-targeted photodestruction due to the fairly limited
ation of light at this wavelength. For targeting cancers
per tissues, use of a clinically relevant, longer-wave-
photosensitizer with a higher singlet oxygen quantum
ay seem to be more appropriate. Using such photo-

izers, the same extent of photoinactivation could be
ed with lower irradiation energies.
ious studies have shown that only the fraction of pKi-
ognized by TuBB-9 and not by MIB-1 is associated with
nthesis of rRNA (4) and that this synthesis was inhib-
y light inactivation after TuBB-9–FITC microinjection
ere, we show that inactivation of pKi-67 with TuBB-
s to cell death in OVCAR-5 monolayer as well as in
ltures, and in keeping with the earlier findings, we
ed a significant decrease in viable cells only when
was targeted with TuBB-9, but not with MIB-1. pKi-
elieved to occur in two different fractions in the cell
s, which are presumably associated with different
g partners and seem to regulate different cellular func-
The observed cell death may not be solely due to pKi-
ctivation but also due to the effect of the evolving
links on binding partners such as the transcription fac-
stream binding factor and its loss of function initiating
uent cell death.
D culture, our flow cytometry studies indicated that
of the cells express pKi-67. Relative to nontreated con-
70% of the cells showed a loss of viability 72 hours after
ith TuBB-9 PICELs. PDT with TuBB-9 PICELs initiates
ath in proliferating cells, and this could prevent further
relative to the nontreated control, where the prolifer-
ells continue to divide and grow over 72 hours. These
re consistent with the more pronounced loss in viabil-
n over 3 days with the TuBB-9 PICELs PDT. Another
that most likely increases cell death observed is the
der effect, where cells, which are in close proximity
cted cells, can be indirectly affected as well. Bystander
ses, induced by defusing mediators, have been well
bed after photodynamic treatment (38). In a 3D model,
effects would be far more pronounced than in mono-
ultures because the bystander effects can propagate in
ee dimensions. The 3D spheres in our ovarian cancer
del are similar to tumor nodules in the human disease,
often occur as regrowth after tumor debulking. The

ed profound structural degradation of tumor nodules

encouraging and provides
Rece

OnlineF
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rdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell
le analysis of a cell proliferation-associated human nuclear anti-
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sting possibilities for combination treatments with
therapeutic agents, where drug penetration into the
s a barrier.
onclusion, the results of the study suggest for the first
hat pKi-67 is potentially an attractive therapeutic tar-
cancer, in addition to being a prognostic marker. Due
ubiquitous expression in all proliferating cells and the
ostic value of the Ki-67 index in many cancers, inacti-
of pKi-67 could be a promising strategy for the treat-
not only of ovarian cancer but also of numerous
nancies. Noncationic PICELs are particularly useful
e subcellular delivery of mAbs and also provide multi-
onal constructs for imaging and therapy, which may be
ted further for encapsulating multiple compartmental-
gents. A broader significance of this study is that it pro-
a platform for targeting of other nuclear proteins that
egulate cell proliferation, such as histones and tran-
on factors. The application of light for specific inacti-
of proteins in living cells has been reported before for
and other proteins (15, 36), although associated cell
was never shown. PDT, a photochemistry-based

ach, is an approved treatment for many pathologies
lso in early or advanced clinical trials for others. This
ally triggered modality provides an additional level of
vity of cell killing due to the confinement of damage
tissue exposed to light. This overall approach combin-
T with pKi-67 targeting holds promise as an effective
therapy and merits further development, requiring test-
more sophisticated in vitro models and appropriate
models with longer-wavelength photosensitizers.
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