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Abstract: Holoscopy is a tomographic imaging technique that combines
digital holography and Fourier-domain optical coherence tomography
(OCT) to gain tomograms with diffraction limited resolution and uniform
sensitivity over several Rayleigh lengths. The lateral image information
is calculated from the spatial interference pattern formed by light scat-
tered from the sample and a reference beam. The depth information is
obtained from the spectral dependence of the recorded digital holograms.
Numerous digital holograms are acquired at different wavelengths and
then reconstructed for a common plane in the sample. Afterwards standard
Fourier-domain OCT signal processing achieves depth discrimination. Here
we describe and demonstrate an optimized data reconstruction algorithm
for holoscopy which is related to the inverse scattering reconstruction of
wavelength-scanned full-field optical coherence tomography data. Instead
of calculating a regularized pseudoinverse of the forward operator, the
recorded optical fields are propagated back into the sample volume. In one
processing step the high frequency components of the scattering potential
are reconstructed on a non-equidistant grid in three-dimensional spatial
frequency space. A Fourier transform yields an OCT equivalent image of
the object structure. In contrast to the original holoscopy reconstruction with
backpropagation and Fourier transform with respect to the wavenumber, the
required processing time does neither depend on the confocal parameter nor
on the depth of the volume. For an imaging NA of 0.14, the processing time
was decreased by a factor of 15, at higher NA the gain in reconstruction
speed may reach two orders of magnitude.
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1. Introduction

Holoscopy is a new imaging technique that combines principles of Fourier-domain optical co-
herence tomography (FD-OCT) with digital holography (DH) [1, 2]. It has promising advan-
tages compared to other optical tomographic imaging techniques. All light backscattered from
the sample is collected by an area camera and no confocal or coherence gating restricts the
depth of field. Compared to FD-OCT, holoscopy is thus capable of obtaining more information
in less time and with less light illuminating the sample. High-resolution imaging is not limited
to the focus region, which is defined by the confocal parameter (twice the Rayleigh length).
Holographic techniques are used to refocus the data that build the tomographic images. These
techniques can bring any layer of the sample into the ‘virtual’ focus – even after the data has
been acquired.

Several techniques have been demonstrated to achieve acquisition of tomographic images
over several Rayleigh lengths with constant or almost constant lateral resolution. Using mul-
tiple foci [3] or non-diffracting beams [4–7], i. e. Bessel illumination, a more uniform lat-
eral resolution over several Rayleigh lengths was demonstrated with an imaging quality that
is comparable to conventional FD-OCT. Interferometric synthetic aperture microscopy (ISAM)
extends the depth range of scanning FD-OCT by numerical post-processing routines that recon-
struct the image structure outside the focus at increased resolution [8–10]. Similar effects can
be achieved by applying refocusing techniques of digital holography to FD-OCT data [11, 12].
However, all techniques that use scanning with either Gaussian or Bessel beams suffer from
reduced sensitivity. In case Gaussian beams are used the light intensity illuminating the scat-
terers drops rapidly in out-of-focus layers. In case of Bessel illumination, intensity is reduced
in all depth layers as relatively large parts of the energy are deposited in the side-lobes of the
beam. Thus, to achieve constantly high sensitivity over the full measurement depth, full-field
approaches have to be applied where a collimated beam is used for illumination. For example,
full-field Fourier-domain OCT has been demonstrated ex-vivo and also in-vivo by using high
speed imaging cameras and tunable lasers [13,14]. Depth independent sensitivity was achieved
by abandoning the confocal gating, but lateral resolution was optimal only in the focal plane of
the imaging optics.

Digital holography (DH) captures the entire wave-field of the object and has a lateral res-
olution that is not restricted to a focal plane. By modeling the light propagation the optical
field is traced back to the object to reconstruct a real image. Using multiple wavelengths, ei-
ther simultaneously in low-coherence holography [15, 16], or sequentially in digital interfer-
ence holography [17, 18] depth structures can be resolved and three-dimensional tomograms
can be obtained. However, previous approaches using multiple wavelengths in DH to obtain
tomographic images either show a non-uniform resolution over depth [19–21] or suffer from
inefficient reconstruction algorithms and reduced imaging quality [18, 22, 23].

It was shown by Emil Wolf that the Fourier transform of the scattering potential can be
obtained when the scattered field of an incident plane wave is observed holographically for
multiple directions of the incident wave [24]. In backscattering geometry only a part of the
Fourier coefficients can be recorded and especially at limited NA a large portion of the low fre-
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quency information for the z-direction is missing. By using multiple wavelengths the sampled
bandwidth is considerably enlarged [25]. Still information of the low frequency components
of the scattering potential are missing. Therefore the theory of inverse scattering was applied
to full-field swept-source OCT (SS-OCT) to calculate an estimation of the scattering poten-
tial [26, 27]. From a forward model for the scattered light field the Tikhonov-regularized least-
squares solution was calculated. Depth-invariant resolution and sensitivity were demonstrated
with simulated data.

In contrast to this work holoscopy records the scattered irradiation in the far-field. It combines
swept-source FD-OCT with DH by using a tunable laser in a holography-like setup. Instead of
using inverse scattering theory, a fusion of numerical reconstruction techniques of FD-OCT and
digital holography is used to achieve uniform sensitivity and lateral resolution over the entire
measurement depth even at high lateral resolution. First experimental results have demonstrated
capabilities of holoscopy for ex-vivo and in-vivo imaging [1]. In this work holoscopy suffered
from a computationally expensive reconstruction. At first, all acquired holograms were recon-
structed to the same numerical focus. Afterwards a Fourier transform for each lateral position
over the recorded wavenumbers provided the depth resolution similar to full-field FD-OCT.
Unfortunately, only a depth of about a Rayleigh length around the chosen layer in the tissue
volume was reconstructed with optimal lateral resolution. For imaging over more than 3mm
the reconstruction steps, which took about 22s, had to be repeated up to 15 times with different
virtual foci. Though holoscopy allows image acquisition of the full volume without physically
refocusing at any NA, computing the image needed serial reconstruction of all tissue layers with
a respective depth of twice the Rayleigh length. This is neither very elegant nor very efficient.

Here we propose a highly efficient one-step reconstruction process of the complete volume.
A similar resampling technique as in ISAM [8–10,26,27] is applied, but without regularization
and thus neglecting the low frequency components of the object structure. Depending on the
relation between Rayleigh length and measurement depth it significantly decreases the required
reconstruction time compared to the previously demonstrated holoscopy reconstruction. For
large NAs improvements by two or more orders of magnitude are expected.

2. Setup

We used two setups to demonstrate the capabilities of the new reconstruction technique. The
first lens-less setup (Fig. 1(a)) was previously used for holoscopy [1]. The light of a rapidly
tunable laser (Broadsweeper BS-840-1, Superlum, Ireland) with a tuning range from 823.5nm
to 873.5nm and 3mW output power was collimated to 2.2mm beam diameter and then split
by a beam splitter cube into reference and sample light. The reference beam was brought onto
a convex mirror ( f =−10.34mm) and the sample beam onto the specimen. The two beams of
reflected and scattered light were then superimposed on a high-speed CMOS camera (EoSens
MC3010, Mikrotron GmbH, Germany) with 1696×1710 pixels measuring 8 μm×8 μm each.
Camera and laser were synchronized by a trigger from the camera which started the sweep of
the laser with the first frame of the imaging sequence. During the sweep 1024 holograms with
1024×1024 pixels were acquired at a frame-rate of 440 frames per second resulting in a total
measurement time of approximately 2.3s. The setup was adjusted in such a way that the path
lengths of all light scattered or reflected by the sample were, in analogy to FD-OCT, slightly
longer than the path length of the reference light. Certain restrictions applied to the optical
layout, as the spatial frequencies of the interference fringes, which depend on the local angle
between sample and reference light, have to be sampled by the camera (see e. g. [28]). The
distance between reference mirror and camera was 81mm. The numerical aperture (NA) of the
setup – determined by the opening angle between sample and camera – was 0.05. The setup
thus provided axial and lateral resolutions of approximately 14 μm and 11 μm, respectively.
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The confocal parameter was 220 μm.
The second setup used a Mach-Zehnder type interferometer for off-axis holoscopy as shown

in Fig. 1(b). It utilized a microscope objective (MO) to magnify the object in order to achieve
higher NAs. The light of a newer version of the rapidly tunable laser (Broadsweeper BS-840-1,
Superlum, Ireland) with an extended tuning range from 882nm to 800 nm and 3mW output
power was split by a fiber coupler into reference and sample light. The sample light was col-
limated to 2.2mm beam diameter and illuminated the sample through a f = 75mm lens and
an MO of NA 0.14 (5× Plan Apo NIR, Mitutoyo, Japan). The sample was approximately put
in the focal plane of the MO. The width of the illumination beam limited the effective field
of view, which was about 1mm in diameter. The light that was scattered back by the sample
passed the MO again. Irradiation scattered at one point approximately left the MO as a parallel
beam. In this far-field a high speed CMOS camera was placed (ACE AC2040-180km, Basler,
Germany) with 2048× 2048 pixels measuring 5.5 μm× 5.5 μm each. The reference light was
collimated to a beam diameter of 16mm and was also brought under an angle of approximately
3◦ onto the camera. The reference light was adjusted such that its overall path length is slightly
shorter than the path lengths of sample scatterers. A total of 1024 holograms with 2048×2048
pixels were acquired with a frame-rate of 127fps resulting in a measurement time of 8.1s. The
NA of this setup was 0.14, as the full aperture of the MO was used. The confocal parameter,
axial and lateral resolution of the second setup were 28 μm, 8.6 μm and 4 μm, respectively.

Reflections from the MO that reached the camera and disturbed the actual interference were
suppressed by using linear polarized light in the object arm and a quarter-wave plate between
MO and object. The plate was adjusted to rotate the backscattered light from the sample by 90◦
compared to the light reflected by the MO. An additional polarizer between camera and MO
suppressed all reflections except those from the camera window and the quarter-wave plate.

(a) (b)

Fig. 1. Setups used for the holoscopic measurements. (a) A lens-less Michelson type setup
was used for 0.05 NA on-axis holoscopy. (b) The Mach-Zehnder type setup for off-axis
recording of the holograms with 0.14 NA was used for high resolution measurements.

3. Theory

3.1. The measured signal

3.1.1. The intensity distribution in holography

In holography the information of the wave field O(x,y;k) as scattered by the sample is encoded
in the interference fringes that occur on superposition with a reference wave field R(x,y;k). The
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intensity distribution which is acquired by the camera can be described by

I(x,y;k) = γ |R(x,y;k)+O(x,y;k)|2

= γ
(
|R(x,y;k)|2 + |O(x,y;k)|2 +(R∗O)(x,y;k)+(RO∗)(x,y;k)

)
, (1)

where x and y denote the lateral position on the camera, k is the wavenumber and γ is a conver-
sion factor of the camera. If the intensity distribution is multiplied with the reference wave four
terms are obtained

(RI)(x,y;k) =
(

R |R|2
)
(x,y;k)+

(
R |O|2

)
(x,y;k)

︸ ︷︷ ︸
DC and autocorrelation terms

+
(
|R|2 O

)
(x,y;k)

︸ ︷︷ ︸
image term

+
(

R2O∗
)
(x,y;k)

︸ ︷︷ ︸
twin image term

,

(2)
of which the third (image term) is proportional to the object wave. The multiplication with R
corresponds to the illumination with the original reference wave when reconstructing a holo-
gram optically.

3.1.2. Numerical propagation in digital holography (DH)

In DH the lateral distribution of scatterers is reconstructed by numerically propagating the
recorded light field O from the camera plane back into the sample volume. This is done by the
propagator, an operator Pk,Δz [·] that computes at a specific wavenumber k the diffracted wave
field in a plane of distance Δz from a known optical wave-field U in the plane z = z0:

U(x,y,z0 +Δz) = Pk,Δz [U(x,y,z0)]

In general, the propagation is isomorph to the addition of real numbers with respect to the
propagation distance, i. e.

U(x,y,z0 +Δz1 +Δz2) = Pk,Δz1+Δz2 [U(x,y,z0)] = Pk,Δz2

[
Pk,Δz1 [U(x,y,z0)]

]
(3)

and – as a direct consequence – the inverse propagator is given by P−1
k,Δz = Pk,−Δz, i. e.

U(x,y,z0) = Pk,−Δz [U (x,y,z0 +Δz)] . (4)

There are several ways to compute the diffracted field (e. g. by the Rayleigh-Sommerfeld
diffraction integral, by the Huygens-Fresnel integral, by the Kirchhoff integral or by the Fresnel
transform, see e. g. [29,30]). We used the angular spectrum approach (see e. g. [28,30]), where
the object waves are decomposed by a 2-dimensional Fourier transform with respect to x and
y into plane waves. In the Fourier space the diffraction of the field Ũ is then computed by a
simple multiplication with a phase factor Pk,Δz (kx,ky):

Ũ(kx,ky,z0 +Δz) = Pk,Δz (kx,ky) ·Ũ (kx,ky,z0) and Pk,Δz (kx,ky) = exp(−ikzΔz) , (5)

where kx, ky and kz are the components of the wave vector which are related to each other by

kz =
√

k2 − k2
x − k2

y . (6)

Equation (5) allows to calculate the Fourier transform of the optical field in any distance from
the camera once it is known in the camera plane.
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3.1.3. Object and reference field in holoscopy

In contrast to digital holography, which images surfaces or flat samples at a single or a few
wavenumbers, holoscopy records scattering three-dimensional samples at a large number of
different wavenumbers. The propagation times of sample and reference radiation are important
as they are used to discriminate the light scattered from different depths. For the mathematical
description we assume a common reference plane, the zero delay plane, at which the radiations
in the sample and reference arm have the same initial phase φ0(k) for all wavenumbers. The
distance from the camera to this reference plane is z0. Scatterers are located at different depths
z from the reference plane. Figure 2 shows the coordinate systems and the variables that were
used to derive the following formulas for sample and reference field.

Fig. 2. Schematic representation of the coordinate system and variables in the sample arm
(left) and reference arm (right) as used for Eq. (7) and Eq. (8).

At a certain k the object wave field is given by the coherent superposition of the propagated
wave fields that are scattered in different depths z of the sample

O(x,y;k) = AOS(k) ·
∫

dzPk,z0+z

[
η(x,y,z)e−ikze+iφ0(k)

]
, (7)

where AO is the overall amplitude and S(k) the normalized spectral intensity of the illuminating
light. η(x,y,z) denotes the scattering potential, i. e. the relative amplitude of the scattered field
compared to the incident field. The phase factor exp(−ikz) is created by the propagation of the
incident plane wave from the reference plane to the point scatterer, before the scattered field is
propagated to the camera by Pk,z0+z [·]. The integral sums the interference signals of all point
scatterers originating from different depths. Attenuation of incoming and scattered radiation as
well as multiple scattering were neglected, i. e. the scattered wave was treated in the first order
Born approximation.

The reference wave is a spherical wave, which has a (virtual) focus in a distance zRef from
the reference plane that is also located in a distance z0 in front of the camera. Using the same
notation as for the object wave, the spherical reference wave can be described by

R(x,y;k) = ARS(k) · e−ik
√

x2+y2+(z0+zRef)
2+ikzRef+iφ0(k), (8)

with amplitude AR.
For the Mach-Zehnder type setup as shown in Fig. 1(b) the coordinates and parameters used

in Eq. (7) and Eq. (8) need to be adjusted. Numerical reconstruction used a spherical reference
wave, although the actual physical wave had been collimated. As the obtained object wave
field is in the far field, the action of a lens is required to reconstruct the image. Except for its
overall z-dependent phase, the spherical reference wave has the same effects as a “numerical
lens” with a focal length corresponding to the radius of curvature of the reference wave, since
both are represented by the same numerical expression (see e. g. [30]). With the introduction of

#168472 - $15.00 USD Received 11 May 2012; revised 13 Jul 2012; accepted 16 Jul 2012; published 4 Sep 2012
(C) 2012 OSA 10 September 2012 / Vol. 20,  No. 19 / OPTICS EXPRESS  21253



the phase-corrected reference wave in the next section, the overall phase difference introduced
by the reference is compensated. The following reconstruction can therefore be used for both
setups.

3.1.4. Phase-corrected propagator

For holoscopy the exact treatment of the phases of reference and sample radiation is important
because their spectral dependence contains the depth information. In order to simplify further
computations we introduce a modified, phase-corrected propagator and its corresponding phase
factor in the Fourier-domain

P0
k,z [·]≡ exp(+ikz)Pk,z [·] and Pk,z (kx,ky)≡ exp(+ikz)exp(−ikzz) .

The phase-corrected propagator does not change the phase of the wave field when it is prop-
agated. It therefore focuses the image without changing the actual optical path length, i. e.
without actually moving the wave field to another plane. We also introduce phase-corrected
reference and object wave fields

R0(x,y;k)≡ R(x,y;k) · e−iφ0(k) · e+ikz0 ,

O0(x,y;k)≡ O(x,y;k) · e−iφ0(k) · e+ikz0 .

For the modified fields the relation

I = γ |R+O|2 = γ |R0 +O0|2

holds and consequently also Eq. (1) and Eq. (2) are still true if R and O are replaced by R0 and
O0, respectively. By adapting Eq. (7) one computes the explicit representation of the modified
object wave field to

O0(x,y;k) = AOS(k)
∫

dzP0
k,z0+z

[
η(x,y,z)e−2ikz

]
. (9)

Except for the phase-corrected propagator P0
k,z0+z [·] this relation has close similarity with the

complex cross-correlation term known from Fourier-domain OCT (see e. g. [31]). If the effect
of the phase-corrected propagator can be reverted a similar reconstruction of η(x,y,z) as in FD-
OCT can be achieved. The depth distribution of the scatterer can be retrieved by a fast Fourier
transform (FFT).

3.2. Reconstruction

3.2.1. Obtaining the object wave

As in DH the first step in the reconstruction process is to obtain the phase-corrected object wave
O0 from the recorded fringe pattern I. To achieve this, twin-image, DC and auto-correlation
terms of Eq. (2) need to be separated from the image term. This problem is well known from
holography. The most common solution is to introduce a carrier frequency by using an off-axis
reference as in our Mach-Zehnder setup shown in Fig. 1(b). The lateral fringes, which encode
object wave, conjugated object wave (twin-image), DC and autocorrelation components, will be
located in different spatial frequency regions. After acquisition of the fringe pattern the different
terms can be separated by spatial filtering [28, 32, 33]. The resulting complex field is no longer
real and contains information about amplitude and phase. It also allows for an increased axial
measurement range as in full-range FD-OCT [34] without requiring any further hardware or
further signal processing.
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Alternatively, in holoscopy the different terms can be separated by positioning the object on
only one side of the reference plane as is commonly done in FD-OCT. Then, all object-related
path lengths are larger than the reference length. After a Fourier transform with respect to k, the
twin-images will be found only at negative frequencies. This axial filtering was used for the on-
axis setup shown in Fig. 1(a). However, as in FD-OCT this approach reduces the measurement
depth by a factor two and autocorrelation noise, i. e. self-interference signals of the scattered
object waves, remain.

Once the laterally or axially filtered intensity distribution I f is obtained and the phase-
corrected reference wave R0 is known, the phase-corrected object wave O0 in the camera plane
is calculated by

O0(x,y;k) =
R0 (x,y;k) I f (x,y;k)

γ |R0 (x,y;k)|2 .

3.2.2. Reconstruction of one Rayleigh length

For the phase-corrected object waves, which are recorded at different wavenumbers, the effect
of the phase-corrected propagator P0 in Eq. (9) can be reverted for a chosen plane located at a
distance of zP from the reference plane, by applying the propagator P0

k,−z0−zP
to O0, i. e.

P0
k,−z0−zP

[O0 (x,y;k)] = AOS(k)
∫

dzP0
k,−z0−zP

P0
k,z0+z

[
η(x,y,z)e−2ikz

]

= AOS(k)
∫

dzP0
k,z−zP

[
η(x,y,z)e−2ikz

]
.

For this plane (z = zP) the propagators will cancel each other and the propagated light field is
the same that could be achieved by imaging the plane at zP onto the camera. For each point (x,y)
the dependence of the remaining term on k is comparable to a complex FD-OCT signal and an
image of the scattering potential S̃ (z)∗ηzP(x,y,z) can be reconstructed for different depths z by
a simple inverse Fourier transform along the k axis

S̃ (z)∗ηzP(x,y,z) =
2

AO

∫
dk exp(+i2kz)P0

k,−z0−zP
[O0 (x,y;k)] . (10)

Here S̃(z) is the Fourier transform of the spectrum and determines the axial point spread func-
tion of the reconstructed holoscopy image. The demonstrated propagator inversion is only pre-
cise for the one selected depth, to which O0 is propagated, and only here ηzP(x,y,z) will be
equal to the scattering potential η(x,y,z). In neighbored planes, ηzP(x,y,z) will be defocused
by a distance z− zP and no sharp image of η(x,y,z) will be reconstructed. Thus the reconstruc-
tion only gives optimal images within a few Rayleigh lengths. The procedure can nevertheless
be repeated for various zP and images can be stitched together afterwards.

3.2.3. Reconstruction of the complete volume in free space

Writing Eq. (10) in the Fourier-domain (
{

kx,ky
}

-space), the propagation operator is according
to Eq. (5) replaced by a multiplication with the phase function Pk,−z0−zP (kx,ky):

S̃ (z)∗ η̃zP(kx,ky;z) =
2

AO

∫
dk exp(+i2kz)exp(ik(−z0 − zP))exp(ikz(z0 + zP)) Õ0(kx,ky;k),

where η̃zP and Õ0 are two-dimensional Fourier transforms of ηzP and O0 with respect to the
x and y axis, respectively. By setting the reconstruction distance z equal to the chosen propa-
gation plane zP the complete volume η̃ is reconstructed. Shifting the terms independent of the
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reconstruction depth z to the right, η̃ can be expressed by a simple integral transform

S̃ (z)∗ η̃(kx,ky;z) =
2

AO

∫
dk exp(+i(kz + k)z)︸ ︷︷ ︸

kernel

exp(+i(kz − k)z0)︸ ︷︷ ︸
phase

Õ0(kx,ky;k). (11)

The right hand side does no longer depend on the initial propagation depth zP. The recon-
struction of the complete volume is possible by a multiplication of the object wave field with
the phase factor exp(i(kz − k)z0) and an integral transform along the k-axis with the modified
Fourier kernel exp(+i(kz + k)z). Though according to Eq. (6) kz is a nonlinear function of k,
rescaling of the recorded data to a linear kz + k scale changes the integral transform to a simple
Fourier transform. In the analytic Eq. (11) this is achieved by introducing a new variable

κ (k) = kz (k)+ k (12)

and a suitable variable substitution in the integral. This yields

S̃ (z)∗ η̃(kx,ky;z) =
2

AO

∫
dκ

dk
dκ

exp(+iκz)︸ ︷︷ ︸
kernel

exp(+i(kz (k (κ))− k (κ))z0)︸ ︷︷ ︸
phase

Õ0(kx,ky;k (κ)),

where k(κ) is obtained by inverting Eq. (12).
The problem of not equidistant data sampling in k is commonly found in FD-OCT, where

the spectrometer disperses spectral interference not linear in k but in the wavelength λ . Inter-
polation and resampling or a fast Fourier transform on non-equispaced data (NFFT) are used to
preserve image quality in FD-OCT. These algorithms differ in imaging quality and processing
speed. Comparison of suitable algorithms have been done for best performance of FD-OCT
(see e. g. [35–37]). Accordingly, the same algorithms can be applied although care needs to be
taken as the resampling also depends on the lateral components kx and ky of the wave vector as

kz =
(
k2 − k2

x − k2
y

)1/2
is a function of k, kx and ky.

Resampling is necessary, because the wave field Õ0 (kx,ky;k) is not recorded in the Cartesian
coordinate system (kx,ky,kz) of the Fourier space, which is directly converted by the inverse
Fourier transform back to the spatial coordinates. By using a non-equispaced Fourier transform
the modified coordinate system, in which the data were recorded, is taken into account. The
phase factor arises as lateral reconstruction distances – the second index of the propagator P –
are measured relative to the camera whereas phases and path lengths, which provide the depth
information, are measured relative to the reference plane. The phase factor corrects for these
different reference points by propagating the object wave fields to the reference plane.

3.2.4. Reconstruction of the complete volume in a medium

The reconstruction by Eq. (11) requires the optical path lengths between scatterer and reference
and the respective imaging distance to be identical, which is only the case in free space. For
example, in a medium with constant refractive index n the effective wavenumber is given by
n · k and the according z-component is

k′z =
√

n2k2 − k2
x − k2

y ,

if kx and ky remain unchanged. This is the case if kx and ky are parallel to the boundary surface
of the medium. In the reconstruction by Eq. (11) the kernel thus needs to be modified by re-
placing k and kz by n · k and k′z, respectively. However, assuming that z0 describes the effective
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propagation distance to focus the reference plane when assuming n = 1, the phase factor does
not need to be modified. The reconstruction is thus given by

S̃ (nz)∗ η̃(kx,ky;z) =
2

AO

∫
d(nk) exp

(
+i

(
k′z +nk

)
z
)

︸ ︷︷ ︸
kernel

exp(+i(kz − k)z0)︸ ︷︷ ︸
phase

Õ0(kx,ky;k), (13)

where the argument of the point-spread function S̃ changed to compensate for the modification
of the Fourier transform when replacing k by n · k. The integral transform by Eq. (13) with
the modified kernel can also be calculated by the NFFT. For moderate NA a simplification is
possible. In paraxial approximation the kernel can be rewritten as

exp
(
+i

(
k′z +nk

)
z
)≈ exp

(
+i

(
2nk+

1
n
(kz − k)

)
z

)
.

By introducing the optical path length z′ = nz the kernel can thus be modified to

= exp
(
(+i(2−ζ )k+ζkz)z′

)
, (14)

with ζ = 1/n2. ζ describes the proportionality constant between imaging distance and optical
path length as shown in Fig. 3. The complete reconstruction formula is given by

S̃
(
z′
)∗ η̃(kx,ky;z

′) =
2

AO

∫
dk e+i((2−ζ )k+ζkz)z′︸ ︷︷ ︸

kernel

e+i(kz−k)z0︸ ︷︷ ︸
phase

Õ0(kx,ky;k). (15)

virtual image of S

scatterer S

z

optical path
z′ = nzz

n

n = 1

n > 1

Fig. 3. Formation of a virtual image of a scatterer by a medium with an index of refraction n
larger than one. The medium decreases the reconstruction distance by 1/n while the optical
path length z′ is increased by n, i. e. z′ = nz.

For ζ = 0, Eq. (15) reduces to Eq. (10) with zP = 0, i. e. the chosen reconstruction distance
is the reference plane. For increasing n the parameter ζ tends to zero, thus the higher the re-
fractive index of the sample, the better the approximation by Eq. (10). In fact, for ζ < 0.5 the
reconstruction by Eq. (10) yields better results than the reconstruction by Eq. (11) that assumes
free space.

In case the paraxial approximation of Eq. (14) is not valid the more specific formula by
Eq. (13) needs to be used. A fast implementation of this formula is possible as well.

An approximate solution of the reconstruction can be used for a fast determination of ζ .
By first Fourier transforming the object waves O0(x,y;k) with respect to the k axis, i. e. using
FD-OCT depth discrimination on the unprocessed holograms and only afterwards performing
holographic refocusing with the center wavenumber for at least two different depths, the focus
positions and the optical path lengths of these layers can be determined. A linear regression of
these points gives ζ and the reference propagation length z0.

#168472 - $15.00 USD Received 11 May 2012; revised 13 Jul 2012; accepted 16 Jul 2012; published 4 Sep 2012
(C) 2012 OSA 10 September 2012 / Vol. 20,  No. 19 / OPTICS EXPRESS  21257



4. Results and discussion

The proposed algorithms have been implemented using C++ with the compiler of the GNU
Compiler Collection (GCC). In order to increase performance, vectorization using Streaming
SIMD Extensions (SSE) intrinsics and parallelization using OpenMP have been applied.

We demonstrated the effectiveness of both proposed reconstruction algorithms using a scat-
tering sample [38] which contains 300− 800nm sized iron oxide nanoparticles embedded in
polyurethane resin. The simple reconstruction according to Eq. (10), which first propagates the
object field from the camera plane to one depth in the sample and then applies the Fourier trans-
form, yields sharp images only in the focal range around the reconstruction depth zP (Fig. 4(a)
and 4(b)). The algorithms can be used to reconstruct the acquired holoscopic data if only a
single layer is of interest. The one-step reconstruction of the complete volume by the NFFT in
Eq. (15) reconstructed all layers over a depth of more than 30 Rayleigh lengths sharply (Fig.
4(c)). However, this does only work if the index of refraction in the sample volume is correctly
incorporated. A one-step reconstruction of a complete volume assuming the free space situa-
tion by Eq. (11) reconstructs only a limited depth region sharply (Fig. 4(d)). In fact, with the
phantom the simple reconstruction shows better performance than the one-step reconstruction
with n = 1.0 as ζ = 1/n2 = 1/1.52 = 0.44 < 0.5. Only the full reconstruction by Eq. (15) with
the correct ζ reconstructs all depths sharply.

0.5mm

zP

(a)

0.5mm

zP

(b)

0.5mm

(c)

0.5mm

(d)

Fig. 4. B-scans from the reconstructed volume, which was recorded from a scattering phan-
tom [38] consisting of multiple point scatterers. (a) and (b) result from single reconstruc-
tions according to Eq. (10) at two different propagation depths zP, which correspond to
virtual numerical foci of the reconstruction. Outside the focal regions the lateral resolu-
tion is degraded. The confocal parameter was 220 μm. (c) One-step reconstruction of the
complete volume by Eq. (15) with the correct refractive index n = 1.5 (ζ = 0.44). No lat-
eral resolution degradation is visible. The loss of intensity in depth is only caused by a
sensitivity roll-off due to the limited instantaneous coherence length of the laser source.
(d) One-step reconstruction of the complete volume by Eq. (11) without correcting for the
increased index of refraction in the sample volume (i.e. n = 1.0 and thus ζ = 1). Focus
degradation is worse than in the reconstruction for a single focal volume. This is due to
the fact that the former corresponds to ζ = 1 and the latter to ζ = 0. The correct value of
ζ = 0.44 is thus closer to the reconstruction of a single plane by Eq. (10).

To demonstrate the abilities of the reconstruction process for more complex biological struc-
tures, tomograms of a bug are shown in Fig. 5. From the whole recorded volume en-face images
at three different depths are shown. Media 1 shows a lower-resolution fly-through reconstruc-
tion of the bug. While the resolution inside the bug changes due to its non-homogeneous re-
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fractive index, the outer shell is sharp within all layers.
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(b)
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(c)

Fig. 5. En-face tomographic images of a bug at three different depth layers. The image
cube was acquired by holoscopy. For reconstruction the one-step algorithm described by
Eq. (15) was used. Internal structures of the bug can clearly be seen. Media 1 shows a
low-resolution fly-through of the bug.

The speed advantage of holoscopy becomes more important for higher NA since the Rayleigh
length drops quadratically with the NA. Images of a grape were acquired with 0.14 NA using
a microscope objective and a Mach-Zehnder interferometer (Fig. 1(b)). B-scans from recon-
structed volumes clearly demonstrate that also for more complex structures a one-step recon-
struction by Eq. (15) is possible while maintaining lateral reconstruction over the depth (Fig. 6).
Some additional artifacts were introduced by reflections of the microscope objective.
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Fig. 6. Holoscopic images of a grape acquired at 0.14 NA using the Mach-Zehnder type
high resolution setup. Simple reconstruction by propagating the field to one focal plane
(left column) is compared with the one-step reconstruction of the complete volume by an
NFFT (right column). (a) B-scan of the simple reconstruction according to Eq. (10). (b) B-
scan of the one-step reconstruction according to Eq. (15). (c) En-face image of the focal
plane of the simple reconstruction. (d) En-face image of the same plane in the one-step re-
construction. (e) En-face image of the simple reconstruction in an optical distance of about
160 μm from the virtual focus shows deteriorated resolution. (f) En-face image of a one-
step reconstruction of the same layer. No degradation of the lateral resolution is observed.
The confocal parameter was 28 μm. Remaining artifacts arise because of reflections from
within the setup.

4.1. Numerical complexity and execution speed

The one-step reconstruction of the complete volume reduces the computational complexity sig-
nificantly. The simple reconstruction by Eq. (10) requires for one focal volume the propagation
of each acquired hologram to a certain depth. For a single propagation of an image array of size
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NX ×NY two 2D Fourier transforms of size 2NX ×2NY are required, if zero-padding is applied
to prevent circular convolution artifacts. One transform is required to go from position space
to Fourier-space and one to go back. Consequently, for N holograms at different wavelengths a
total of 2N two-dimensional Fourier transforms of size 2NX × 2NY are required. For each lat-
eral position a one-dimensional Fourier transform of size N needs to be performed afterwards
to gain depth information, i. e. a total of NX ×NY Fourier transforms calculate the final data.
In total, 2N Fourier transforms of 2NX × 2NY arrays plus NX ×NY one-dimensional Fourier
transforms of N data points are needed for each focal volume. The overall complexity CSL of a
simple reconstruction with a single focus layer (SL) is of the order of

CSL ∼ O (8NNXNY · log(4NXNY )+NXNY N · logN) .

The one-step reconstruction of the complete volume by Eq. (15) also requires N two-
dimensional Fourier transforms of size 2NX × 2NY to bring the images to Fourier space and
2NX × 2NY one-dimensional Fourier transforms of size N to gain depth information, which is
for the complete volume 4× more than for the reconstruction of only one focal volume by
propagation and FFT. Because of the hermitian symmetry, the back-transformation from 2D
Fourier-space to position space only requires N/2+ 1 two-dimensional Fourier transforms of
size 2NX ×2NY , which is about half the amount required for the propagation and FFT approach.
The overall complexity CFV of the one-step reconstruction for the full volume (FV) can thus be
written as

CFV ∼ O (6NNX NY · log(4NXNY )+4NXNY N · logN) .

On a quad-CPU Opteron 6150 a single reconstruction of a dataset of 1024 holograms with
1024×1024 pixels by Eq. (10) took about 22s whereas a reconstruction of the complete volume
by Eq. (11) or Eq. (15) took about 40s, i. e. about twice the time required for the reconstruction
of the focal volume.

Using these measurements, we can estimate the required time when stitching several images
with different focus layers using the single reconstruction by Eq. (10) compared to using one
one-step reconstruction by Eq. (11) or Eq. (15): the confocal parameter (i.e. twice the Rayleigh
length) for the lens-less setup was 2zR = 220 μm and the measurement depth was 3.7mm which
would need 17 reconstructions of different focal volume for an overall diffraction limited res-
olution in air. In this case the one-step reconstruction of the complete volume offered an 8.5×
speed-up. For a medium with refractive index n = 1.5 – as the scattering sample in Fig. 4 –
this speed-up is reduced by a factor ζ = 1/n2 ≈ 0.44, because the focal range is increased by
a factor n and the effective total measurement depth is reduced by a factor 1/n, because it is
determined by the optical path length. The full reconstruction is still about 3 to 4 times faster
in this case.

For the high NA setup in Fig. 6 the confocal parameter was reduced to about 2zR = 30 μm
and the measurement depth was about 2.2mm. Therefore in air with Eq. (10) about 70 recon-
structions are required with an approximately 30× total speed-up when using Eq. (11). With a
refractive index of about n= 1.4 this speed-up is again reduced by a factor ζ ≈ 1/2 and thus the
grape shown in Fig. 6 can be reconstructed about 15× faster using the complete reconstruction
by Eq. (15) compared to the single layer reconstructions by Eq. (10).

For higher lateral resolution, this factor will increase further. The actual speed-up for the
reconstruction depends on the ratio of the confocal parameter 2zR to the measurement depth d
of the system and the refractive index n of the sample. The expected improvement in recon-
struction speed is shown in Fig. 7. At high NAs the one-step reconstruction will be up to three
orders of magnitude faster.
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Fig. 7. Approximate increase of the reconstruction speed by using the one-step algorithm
of Eq. (15) instead of sequentially applying Eq. (10) for reconstructing multiple focal vol-
umes. The increase of speed depends on measurement depth d and the refractive index n of
the sample.

5. Conclusion and outlook

Holoscopy is a promising imaging technique which combines digital holography with full-field
swept-source OCT. With inverse scattering for frequency-scanned full-field OCT [26] it shares
unique advantages compared to conventional OCT. Depth of field is not limited by the focusing
optics, i. e. sharp images are obtained over several Rayleigh lengths with only a single data
acquisition. All backscattered photons from the sample volume are used efficiently, sensitivity
does not degrade due to confocal gating over the complete measurement depth. The remain-
ing degradation in signal-to-noise ratio in the scattering sample is only caused by the light
attenuation of the sample and the limited instantaneous coherence length of the laser. Image
reconstruction is done numerically at a significantly increased numerical complexity compared
to confocal OCT.

Compared to scanning ISAM [8–10], sensitivity does not degrade outside the confocal range.
In contrast to inverse scattering for full-field SS-OCT [26, 27], holoscopy does not image the
object volume onto the camera, but samples the interference patterns of the scattered field with
a reference field. Similar setups as used as in digital holographic microscopy (DHM) are used.
This distributes the scattered irradiation over multiple pixels and should give an advantage in
SNR and dynamic range for localized tissue structures. The off-axis reference beam in the pre-
sented version of holoscopy, which is also commonly used in DHM, allows full-range measure-
ments, i. e. doubles the measurement depth by avoiding the ambiguity of positive and negative
path length differences, and avoids auto-correlation signals and coherence noise. Consequently,
holoscopy image reconstruction combines concepts of DH with FD-OCT to yield an image of
the sample volume, which does not resemble the real scattering potential due to the missing
low spatial frequencies [25]. Inverse scattering of full-field frequency-scanned OCT [26, 27]
estimates the complete scattering potential by trying to solve the inverse problem. Both algo-
rithms rely on the same forward model for the scattered radiation and use the same resampling
in frequency space. While the holoscopy reconstruction is completely deterministic and more
intuitive, since it models the physics of light propagation, inverse scattering potentially yields
more quantitative information on the refractive index distribution of the object. Physical con-
straints like real imaging optics or boundaries between areas of different index of refraction are
easily incorporated in the here presented holoscopy reconstruction algorithm. So far, no images
of real objects were published using inverse scattering on full-field SS-OCT data, and therefore
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a comparison of image quality with holoscopy has still to be done.
In the same way as full-field inverse scattering [26, 27] and full-field SS-OCT [13, 14],

holoscopy is vulnerable to multiple scattered photons and cross-talk. Contrary to full-field OCT
a spatially incoherent light source cannot easily be applied to suppress this cross-talk as the spa-
tial coherence is required to sample the light fields correctly.

In conclusion, we demonstrated that the numerical complexity of holoscopy is considerably
reduced by a one-step reconstruction algorithm using an NFFT on the non-equispaced data of
the angular spectra which are recorded at multiple wavenumbers.

The reconstruction process uses a resampling in frequency space which was previously
demonstrated for ISAM, Synthetic Aperture Radar and other reconstruction algorithms for vol-
umetric imaging, which are based on propagation time measurements [27, 39].

Essential for the reconstruction is a separation of holographic and OCT imaging distances.
The one-step algorithm can be applied as long as the argument of the kernel has a linear relation
of the depth, as is the case in a medium of constant refractive index. We demonstrated up to
15× reduced processing time and good imaging performance on a phantom and two biological
objects at NAs up to 0.14. Using the one-step reconstruction algorithm makes the numerical
reconstruction process in holoscopy significantly faster especially for high NA imaging. The
one-step reconstruction algorithm is a significant step towards making real-time imaging using
holoscopy possible.
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