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A B S T R A C T 

In OCT imaging the spectra that are used for Fourier transformation are in general not acquired linearly in k-
space. Therefore one needs to apply an algorithm to re-sample the data and finally do the Fourier Transformation 
to gain depth information. We compare three algorithms (Non-Equispaced DFT, interpolated FFT and Non-
Equispaced FFT) for this purpose in terms of speed and accuracy. The optimal algorithm depends on the OCT 
device (speed, SNR) and the object. 

1. INTRODUCTION 

In Fourier Domain OCT imaging one problem is that the spectral data are usually not acquired linearly in the 
wavenumber k but instead in some other variable A. Therefore applying a simple Fast Fourier Transformation 
(FFT) to the data would yield broadened signals and the resulting images will appear blurred. The standard 
solution to this problem is to linearly interpolate the acquired data with the help of the function X(k) in order 
to make them linear in the wavenumber k. X(k) can in general be determined using functional optimization or 
piecewise Fourier transformation (STFT). However, in most cases a simple resampling is not sufficient as this in 
general produces major side lobes for strong signals especially at high imaging depth. Therefore additional over-
sampling is used which reduces this problem and increases image quality significantly, however this oversampling 
adds computation time as the length of the FFT increases as well. 

There are alternative algorithms for performing FFTs on non equispaced nodes.1 One of the best algorithms 
for this case is the NFFT, which - depending its settings - often shows better performance and less artifacts 
than the interpolated FFT (iFFT). 

Nowadays high-speed OCT devices have reached acquisition speeds of spectra with more than 100 kHz at 
2048 pixels per spectrum. To process this amount of data online on a standard PC the FFT with oversampling 
and linear interpolation is too slow. However, the processing results do not need to be as precise as for the 
slower systems as in general the Signal-to-Noise ratio is decreased as well and therefore side-effects of inferior 
algorithms cannot be seen. We therefore compare various algorithms and approaches to the problem in terms of 
image quality and speed. 

2. ALGORITHMS 

2.1 Non-Equispaced Discrete Fourier Transformation 

We first have a look at the mathematical precise result, which can be used as a reference for other processing 
techniques. The Discrete Fourier Transformation fx of a signal with N data points, acquired linearly in k namely 
fk is given by 
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However, in our case the signal fk is not given and instead we have a signal f\ and a function k(λ) describing 
the relation between A and k. To get fx we therefore need to compute 

The result will be referred to as Non-Equispaced Discrete Fourier Transformation (NDFT). As the creation of 
an FFT algorithm of a standard DFT (1) uses the equispacing of the input data in k-space we cannot simply 
create a fast version of (2). 

The NDFT is in principle a matrix multiplication and one can precompute the matrix elements to get 
optimal performance. But due to the high number of multiplications and additions needed the NDFT is still 
slow compared to the alternative algorithms. The computational complexity of this appraoch is approximately 
~ 0(N2). Similar to standard DFT being a development into orthogonal functions, namely unchirped sine and 
cosine functions, this approach can be seen as the development into orthogonal chirped sine and cosine fucntions. 
A similar approach was already suggested by.2 

2.2 Interpolated FFT 
The interpolated FFT (iFFT) starts by resampling the data given linearly in A to be linearly in k. The interpo
lation step is done by means of linear interpolation. Assuming that λdescribes the index of the data points that 
have been acquired and thus running from 0 to N — 1, the values fk are approximated by 

where [•] and [•] donate the rouding up and rounding off operations, repcetively. For this interpolation an 
oversampling factor α is used: The N input values f\ are hence used to create αN values, the length of the 
subsequent FFT is therefore increased by a factor a, as is the computation time. Fig. la shows that the linear 
interpolation can be seen as a weighted average of the neighboring points of the interpolated values. The weights 
for the two points are given by a triangle function given by 

The linear interpolation is therefore also a convolution with (k). After the FFT one therefore needs to de
convolve the function by dividing the results with the Fourier transform of this triangle function. Otherwise 
one will get results which appear to have an increased roll-off in signal intensity, although the SNR will remain 
unchanged. The Fourier Transformation of (k) is given by 

To the result fx of the FFT one therefore needs to multiply a correction cx which is given by 

The linear interpolation and the following FFT have approximately a complexity of ~ O(αN) and ~ O(αN . 

logαN), respectively. For optimal performance one can precompute the factors used for the linear interpolation 
and the values used for the deconvolution after the FFT. In the following we will refer to the this algorithm as 
iFFTa with α replaced by a number reflecting the oversampling. 
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Figure 1: Interpolated FFT and NFFT in comparison. 

2.3 Non-Equi spaced Fast Fourier Transformation 
The Non-Equispaced Fast Fourier Transformation (NFFT) is similar to the iFFT, but instead of convolving 
with a triangle function another window function is used which is cut off sufficiently far from the data point 
that needs to be approximated (see fig. lb).1 The cut off is determined by a parameter m and therefore the 
algorithm has in addition to α another parameter that influences accuracy and speed of the algorithm. In 
general the algorithm will be faster but increased artifacts are observed when α and m are chosen smaller. 
The convolution has a complexity of about ~ O(mαN) and therefore the complete complexity is approximately 
~ 0(mα.N + αN . log α.N). 

In addition, it has been shown that in most cases the Kaiser-Bessel window yields best results. As for OCT 
images the window function values for the data points can be precomputed completely this window function is 
the best choice for our purpose. We will refer to this algorithm as NFFT αm. 

3. R E S U L T S 

3.1 Benchmarks 
To compare the speed of the different algorithms we also take additional processing steps into account to get a 
real measure on how many A-scans per second can be performed. We measure the full processing from integer 
raw data as acquired by the camera/analog-digital converter to a final OCT image as floating point values. The 
steps included are: 

1. casting the camera output (8-bit unsigned integer data) to single precision (32-bit) floating point numbers 

2. removing offset errors (dark signals of the camera) 

3. apodization (deconvolution) of the spectrum by dividing by a signal-less reference spectrum 

4. Fourier Transformation (including the λ to k conversion) 

5. building the absolute values of the complex output 

6. taking the logarithms 

7. applying a high pass filter to remove the Fourier transform of the spectrum itself, which is just a constant 
addition to each A-scan pixel if performed at the end 
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Figure 2: Benchmark results of various processing routines. 

The deconvolution for iFFT and NFFT can be included in the final high pass filter step. All algorithms were 
performed on a Core2 Quad with 2.6 GHz where multi-threading and vectorization were used to maximize speed. 

Benchmarks were performed for data acquired by a high speed OCT device with linear-k spectrometer as 
this is the case where the highest A-scan rates are expected and needed. Anyway, the performance of the NFFT 
algorithms depends only slightly on the function k(λ), namely this function determines how many data points 
need to be evaluated for the pre-FFT convolution. All other algorithms do not depend on k(X) at all. The 
benchmark results can be found in fig. 2. For the iFFT the number of original data points that are used for 
computing an interpolated value is always two and thus fixed, whereas for the NFFT this number might vary 
slightly. For this reason the NFFT11 shows slightly worse performance than the iFFTl. The other results are 
as expected, the NFFT performance drops with increased α or m and the iFFT performance drops for increased 
α. The standard FFT without interpolation is the fastest and the NDFT (a full matrix multiplication) is clearly 
the slowest. 

3.2 Simulation 
Degradation of the A-scans due to the different algorithms are best seen for artificial signals with no noise. Fot 
these, the precision of the results are limited by numerical accuracy only. The simulated signals were created 
with an Hann-windowed spectral shape and five modulation frequencies and an artificial function as chirp which 
was eiven bv 

where h = 50. Additionally, the spectra were convoluted with a Gaussian point-spread function and modulation 
transfer function with σ = 0.5 pixels to artificially create a roll-off in signal intensity. 

Furthermore we also created a spectrum with no chirp. This is the ideal case where no interpolation and 
oversampling is needed at all. It can be used to compare the output of the algorithms. The results can be found 
in Fig. 3. 
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(a) Simulated spectrum used for evaluation of the algorithms. 

(b) Results of the algorithms applied to the artificial spectrum and to a non-chirped version of it. 
Figure 3: Results of the simulated spectra and their resulting OCT signals. 
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In general the results are as expected. Faster algorithms show in most cases more artefacts. However, the 
NFFT in general shows less artefacts than an iFFT of similar speed. One should keep in mind that for real world 
situations the data precision is not limited by numerical accuracy but by noise generated by statistical processes 
and electronics. Thus, depending on the SNR of the OCT device at hand the numerical artefacts are not seen 
and covered by real noise. 

4. CONCLUSION 

It has been shown that there are viable alternatives to the standard interpolated FFT when dealing with chirped 
spectra to gain OCT images. Depending on the device/camera at hand that is used for acquiring the spectra, 
the object one wants to image and the acquisition speed an algorithm needs to be selected. Whereas for low 
speed and high SNR devices one can simply use an algorithm yielding optimal image quality in real time the 
situations is somewhat more difficult for high speed OCT devices. In this case one needs to balance processing 
speed and image quality. In future work we will show how these algorithms perform for various real-world OCT 
devices. 
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