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Abstract

Purpose. A2-E is the dominant fluorophore of lipofuscin in
the retinal pigment epithelium. In an in-vitro setup, we deter-
mined the temperature-dependent changes of the A2-E fluo-
rescence with the aim of also assessing the potential value of
such measurements for determining retinal temperature by
autofluorescence measurements during laser treatment.

Methods. A2-E was biosynthesized and diluted in Dimethyl
Sulfoxide (DMSO) to 1mM. Fluorescence measurements
were performed with a photospectrometer under various tem-
peratures ranging from 20°C to 75°C. Autofluorescence was
excited at 467nm, and emission was detected around 632nm.

Results. A2-E fluorescence intensity showed a linear decrease
concomitant with temperature increment. At 75°C, the fluo-
rescence intensity decreased by 43% compared to at 20°C.
Fluorescence intensity was completely reversible dependent
on the temperature, which cannot be explained by thermal
A2-E alteration.

Conclusions. If the A2-E temperature-dependent fluores-
cence in-vitro is transferable to human fundus autofluo-
rescence, then it may be possible to apply an
autofluorescence-based online detection device for noninva-
sive determination of fundus temperature during in vivo laser
treatment. This is of clinical relevance, especially for the
application of photodynamic therapy (PDT) and transpupil-
lary thermotherpy (TTT).
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sis; fundus laser treatment; lipofuscin; transpupillary ther-
motherpy; TTT

Introduction

The recently developed technique of imaging fundus auto-
fluorescence (FAF) in vivo provides additional data in various
retinal disorders.1 FAF was shown to be mainly derived from
lipofuscin in the retinal pigment epithelium (RPE).1–5 Lipo-
fuscin accumulates with age as a byproduct of constant
phagocytosis of the photoreceptors’ outer segments in the
RPE cells.4,5 Excessive accumulation of lipofuscin is also a
common pathogenic pathway in monogenic and complex
retinal diseases. With the advent of confocal scanning laser
ophthalmoscopy, it is now possible to record the FAF using
an excitation wavelength of 488nm.1,6 Normal fundus
imaging revealed decreased autofluorescence at the macular
area, which may account for a slower accumulation rate of
lipofuscine in the fovea7 but also to absorption of short wave-
length light by the macular pigment, consisting of lutein and
zeaxanthin.6 FAF intensity also decreases towards the periph-
ery.6–10 Because FAF mainly originates from lipofuscin 
granules in the RPE and since melanin in the latter is the
dominant absorber of laser energy in the green spectral
region,5,11 it can be assumed that alterations in the RPE, sec-
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ondary to laser treatment, result in changes in the FAF char-
acteristics. This has already been demonstrated following
conventional laser photocoagulation and selective RPE laser
treatment.12,13 Lipofuscin contains of numerous biomolecules
including proteins and lipids.14 The main fluorophore of the
lipofuscin – especially in the RPE – is a Schiff base reaction
product A2-E (N-Retinyliden-N-Retinylethanolamine),
which was recently identified and synthesized.15–17 This com-
pound possesses toxic properties which are mediated via
various pathways, for example as inhibition of lysosomal
degradative functions in RPE cells.18,19

Here we investigated the fluorescence properties of A2-E
under the impact of temperature alterations. If A2-E fluores-
cence intensity is temperature-dependent and if these tem-
perature-related changes are similar to those of the lipofuscin
within the RPE when laser irradiation is applied to the retina,
FAF intensity would reflect RPE temperature during laser
application. Knowledge of the exact tissue temperature
during laser treatment would be important in terms of
dosimetry for new laser treatments such as photodynamic
therapy (PDT);20 or transpupillary thermotherapy (TTT);21

to prevent excessive heat induction with consecutive irre-
versible damage and degeneration of the apposing neurosen-
sory retinal layer.

Material and methods

The lipofuscin compound A2-E was synthesized by coupling
of all-trans-retinaldehyd and ethanolamin (2 :1) as described
by Parish.17 A2-E was solved into methanol (1.22mM) and
diluted in Dimethyl Sulfoxide DMSO to 1 mM. Vaporization
in DMSO occurs at 189°C, thus fluorescence measurements
could be made at temperatures up to 75°C.

A fluorescence-spectrometer (SPEX2, Jobim Instru-
ments) was used to measure the autofluorescence of A2-E.
A2-E shows similar broad excitation- and emission spectra
as FAF-measurements in vivo. As described previously,22

lipofuscin can be excited between 450nm and 540nm and
the emission can be detected between 500nm and 780nm.
Measurements of temperature-related changes in fluores-
cence intensity were performed using the excitation wave-
length of 467nm (FWHM ± 2nm) at an excitation power of
0.87mW. The measured emission wavelength was 632nm
(FWHM ± 10).

A temperature-controlled cuvette holder was inserted into
the sample chamber. The temperature of this holder was con-
tinuously adjustable from 20°C to 75°C. The sample tem-
perature was measured with a thermal element (type J) in the
cuvette. The temperature of the sample could be obtained
with an accuracy of 0.1°C. During all measurements the
sample was melted with a micro pole. Fluorescence data
were collected when increasing the temperature up to 75°C
within 350 seconds and later on decreasing the temperature
again to baseline. The temperature course as well as the cor-
responding fluorescence intensity of A2-E was recorded with

a PC during measurement. The integration constant was 0.2
seconds and 5 data points were averaged. The maximum
duration of measurement time frames was two hours. From
the fluorescence intensity data measured over the tempera-
ture of the sample a linear regression curve was calculated.

Results

The excitation spectrum of A2E, detected at 632 (FWHM ±
10) nm, had a broad range from 425nm to 525nm with its
maximum at 467nm. The A2E emission ranged from 575nm
to 700nm with its peak at 632nm, when excited at 467nm
(FWHM ± 2nm); (Fig. 1).

In two hours of measurement at a baseline temperature of
20°C, no spectral or intensity changes of the A2E fluores-
cence were observed. Thus due to the low excitation inten-
sity of 0.87 mW, any bleaching effect of A2E could obviously
be prevented. By increasing the temperature from 20°C to
37°C, the fluorescence intensity of the A2E sample decreased
by 17%. Subsequent decrease of temperature towards base-
line (20°C) led again to the initial fluorescence intensity 
(Fig. 2). No delay of the fluorescence intensity response was
detected within the temporal resolution of 1 second in our
experiment. At high temperatures (75°C) the fluorescence
intensity decreased by 43% compared to at 20°C and
remained constant over a time frame of 10 minutes (Fig. 3).
A linear correlation with a standard deviation of 2% was
found between fluorescence intensity of the A2-E and the
temperature of the sample (Fig. 4). The reduction of the flu-
orescence intensity was about 1% per °C of sample temper-
ature. This intensity change was completely reversible, even
from temperatures up to 75°C. Because of this reversibility,
thermal alteration or destruction of A2E seems to be unlikely
up to temperatures of 75°C.
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Figure 1. Measured excitation- and emission spectra of A2-E.
Both spectra are broad, reaching from 425 nm to 525 nm (excita-
tion, detection 632 ± 10 nm) and 500 nm to 700 nm (emission, 
excitation 463 ± 2 nm).
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Discussion

In this study we investigated the temperature-dependent
behavior of the main fluorophore of the lipofuscin in the
RPE, A2-E, in-vitro. We showed that A2-E is stable for tem-
perature changes up to 75°C, that fluorescence decreases lin-
early by about 1% per °C increase, and that this relationship
is reversible. Denaturation of A2-E was not achieved for 
temperatures up to 75°C.

If these results are transferred to in-vivo conditions, using
autofluorescence for non-invasive determination of the RPE
temperature during laser treatment appears to be an interest-

ing application of this phenomenon. However, several factors
have to be considered. 1) A2-E in humans is only one fluo-
rophore of lipofuscine and the magnitude of its contribution
to the in-vivo fluorescence is still unknown. Thus different
fluorescence may arise from actual lipofuscin granules in
humans, rather than from A2-E alone. 2) For the in-vitro
experiments, A2-E was diluted in DMSO, which is different
to the human medium. Thus fluorescence of A2-E may act
differently in vivo. 3) It is very well known that fluorophores
apart from the RPE are present in human tissue anterior and
posterior to the RPE cell monolayer, including rhodopsin 
in photoreceptors, connecting tissue, melanin, collagen,
eosinophiles, Flavin-Adenin-Dinucleotid (FAD) and Flavin-
Mononucleotid (FMN).23 The excitation and emission bands
of some of these fluorophores overlap with lipofuscin fluo-
rescence characteristics. Therefore, fluorescent properties of
these molecules need to be considered, and also the temper-
ature-dependent stability of those fluorophores under tem-
perature increase is not yet known. 4) Finally the in-vivo
fluorescent data may be largely affected depending on the
individual status of the crystalline lens and also the macular
pigments.

However; according to current knowledge, A2-E is the
dominant fluorophore of the lipofuscine complex.4 Thus it
may be speculated that autofluorescence of the human fundus
reacts to temperature increase in a similar manner to that
shown in our in vitro data. This would be of particular rele-
vance for novel laser applications such as PDT or, in par-
ticular, TTT.21 It is known that effects of TTT depend
significantly on fundus pigmentation, but so far no dosime-
try control is available. Clinically, inadvertent retinal burns
have been described in the conventionally-applied dose
range, with irreversible damage and visual loss.24
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Figure 2. Course of fluorescence intensity (cps, counts per
second) during increase and subsequent decrease of sample tem-
perature containing A2E in DMSO (1 mM). During temperature
increase, fluorescence intensity of A2-E reduces at about 1% per
°C. If the temperature is decreased again, baseline intensity of 
fluorescence will be achieved.
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Figure 3. Course of fluorescence intensity during temperature
increase of A2-E in DMSO (1 mM) over 75°C. Constant values for
fluorescence intensity (cps, counts per second) over a period of 10
minutes even at these high temperatures indicate that A2E will not
be destroyed.
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Figure 4. Course of fluorescence intensity (cps, counts per
second) of A2-E in DMSO (1 mM) over temperature (from Fig. 3).
A linear correlation was found between decay of fluorescence 
intensity and temperature increase, which was reversible.
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Since the temperature increase in retinal tissue is only
moderate during PDT and TTT – in contrast to the high tem-
perature increases during photocoagulation – RPE will not
be damaged from those kinds of laser application, and there-
fore RPE-related online temperature determination using
FAF might be feasible for these treatments. It was shown that
FAF can be measured online during treatment – presenting
an autofluorescence intensity decay during ms-pulsed laser
heating in the green spectral range (527nm).25 Using the
same slitlamp-adapted online setup, measurements should
also be possible with IR diode lasers if a second laser emit-
ting in the blue/green spectral region is provided to excite the
fundus FAF. Within the slitlamp, the FAF can be coupled out
by a dichroic beam splitter and guided to a photodiode for
the FAF intensity measurements (Fig. 5). It is possible that
such an “online” control can be used to adjust laser power
automatically based on the FAF intensity change within the
tissue, thus making e.g., TTT a more practical treatment
option. However, first experiments have to address the ques-
tion of general feasibility of this method in-vivo and in
human conditions.

Secondly, it has also be remembered that laser treatment
will be performed in pathologic retinal conditions as e.g.,
exudative age-related macular degeneration. In these dis-
eases, FAF reveals largely variable patterns of decreased and
increased autofluorescent areas, in dependence from classic
or occult choroidal neovascularization, subretinal hemor-
rhage or RPE detachment.1 Online temperature determina-
tion using FAF measurements during laser treatment might
then reveal incorrect temperature variations. Finally, those
pathologic conditions might correlate with higher levels of
lipofuscine and consecutively A2-E. However, PDT and TTT
therapy consist of continuous light application. One might be
concerned about continuous FAF imaging during the treat-

ment period because this additional energy deposition in the
altered tissue may lead to adverse effects. However, the
maximal retinal irradiation should be well below the limits
established by the American National Standards Institute,26

thus adverse effects should be ruled out. On the other hand,
continuous FAF excitation seems unnecessary for proper
retinal temperature monitoring. It would also be sufficient to
use only small single pulses (e.g., 100 measurement points
per treatment) to regulate temperature sufficiently.

In summary, using FAF based temperature measurements
to guide laser application in PDT and in particular TTT tech-
niques might be an interesting new application. In-vivo
studies are needed to evaluate the possible transfer of the in-
vitro results to a clinical scenario.
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